REPORT OF GEOTECHNICAL ENGINEERING SERVICES

Panzer Nursey 17980 West Baseline Road Beaverton, Oregon

For Stanton Street Building Company, LLC September 8, 2022

Project: StantonSt-14-01

91210PE

OREGON

OREGON

OREGON

EXPIRES: 12/31/24

September 8, 2022

Stanton Street Building Company, LLC 2132 SW Montgomery Drive Portland, OR 97201

Attention: Pam Verdadero

Report of Geotechnical Engineering Services

Panzer Nursery 17980 West Baseline Road Beaverton, Oregon Project: StantonSt-14-01

NV5 is pleased to submit this report of geotechnical engineering services for the Panzer Nursery development located at 17980 West Baseline Road in Beaverton, Oregon. Our services for this project were conducted in accordance with our proposal dated June 22, 2022.

We appreciate the opportunity to be of service to you. Please call if you have questions

OREGON

12/31/24

EXPIRES:

regarding this report.

Sincerely,

NV5

Tyler A. Pierce, P.E.

Senior Project Engineer

Shawn M. Dimke, P.E., G.E.

Principal Engineer

TAP:SMD:kt

Attachments

One copy submitted

Document ID: StantonSt-14-01-090822-geor.docx

© 2022 NV5. All rights reserved.

EXECUTIVE SUMMARY

We understand the proposed development will consist of single-family residences, three- to fiveplex townhomes, apartment buildings up to four stories tall, and associated infrastructure. The following provides a summary of pertinent geotechnical considerations for the project. We recommend referencing the report for a thorough description of the subsurface conditions and geotechnical recommendations for the project.

- Undocumented fill was encountered in borings B-2, B-5, B-6, B-7, B-10, and B-11 to depths between 2.5 and 12.5 feet BGS. The fill is primarily located along the western edge and the northwestern corner of the site. The fill along the western edge of the site appears to correlate approximately with the elevation difference between the site and adjacent SW 185th Avenue. Foundations located within the undocumented fill area, roughly the western one-third of the site, should be supported on minimum 2-foot-thick gravel pads or the undocumented fill can be removed and replaced as structural fill. Deeper granular pads may be necessary if soft or deleterious material is encountered.
- The proposed structures can be supported on conventional spread footings founded on firm native soil, structural fill overlying firm native soil, or minimum 2-foot-thick gravel pads overlying undocumented fill.
- We recommend improving the upper 12 inches of subgrade where undocumented fill is observed. The soil can be improved by removal and replacement with crushed rock, cement amendment, or moisture conditioning and re-compaction (only during the dry season).
- Based on soil conditions, liquefaction settlement is not considered a site hazard. The finegrained soil beneath groundwater will likely experience strain softening during a design-level seismic event, but we estimate settlement observed at the surface will be negligible.
- There are many existing shallow underground utility lines at the site for the nursery operations. We recommend complete removal of the shallow utilities. The resulting disturbed soil should be moisture conditioned and recompacted as structural fill (only during the dry season) or removed and replaced with imported granular material.
- Groundwater was observed at depths between 6.5 and 9.5 feet BGS in most of the borings.
 In the borings along the western edge of the site, where the undocumented fill is primarily located, groundwater was observed at depths between 12.5 and 22.5 feet BGS. Pore pressure dissipation testing conducted with the CPTs indicates static groundwater between 5.3 and 6 feet BGS.
- The fine-grained soil present at the ground surface is easily disturbed during the wet season or when at a moisture content that is above optimum, such as after demolition of pavement and slabs. If not carefully executed, site earthwork can create soft areas and moderate repair costs can result. Subgrade protection is essential and may include placing 12 to 18 inches of granular material over subgrade for staging and haul road areas or cement amending the subgrade and covering it with a thin layer of crushed rock.

The fine-grained soil present at the ground surface can be sensitive to small changes in moisture content and difficult, if not impossible, to adequately compact during wet weather or when the moisture content of the soil is more than a couple of percent above the optimum required for compaction. Depending on the time of year, significant drying will likely be required before using on-site clayey and fine-grained soil as structural fill. Accordingly, the on-site fine-grained soil can typically only be placed as structural fill during the dry summer months.

- Due to shallow groundwater, very low tested infiltration rates, and undocumented fill in the
 western portion of the site stormwater, infiltration is not considered feasible as the primary
 means for managing stormwater from the site. We recommend infiltration systems, if used,
 have a redundant overflow system.
- Foundation drains are recommended around the perimeter of the proposed buildings due to relatively shallow perched groundwater conditions observed at the site.

TABLE OF CONTENTS

ACRONYMS AND ABBREVIATIONS

1.0	INTRO	DDUCTION		1		
2.0	SCOPE OF SERVICES BACKGROUND					
3.0	BACK		2			
4.0	SITE	CONDITIONS		2		
	4.1	Geologic Setting		2		
	4.2	Surface Conditions		3		
	4.3	Subsurface Conditions		3		
	4.4	Seismic Hazards		4		
	4.5	Infiltration Testing		5		
	4.6	DCP Testing		5		
5.0	DESIG	GN RECOMMENDATIONS		6		
	5.1	General		6		
	5.2	Shallow Foundations		6		
	5.3	Floor Slabs		7		
	5.4	Retaining Structures		7		
	5.5	Seismic Design Criteria		8		
	5.6	Pavement		9		
	5.7	Drainage Considerations	1	LO		
	5.8	Infiltration Systems	1	LO		
	5.9	Permanent Slopes	1	L1		
6.0	CONS	STRUCTION RECOMMENDATIONS	1	L1		
	6.1	Site Preparation	1	L1		
	6.2	Construction Considerations	1	L2		
	6.3	Excavation	1	L3		
	6.4	Materials	1	L4		
	6.5	Erosion Control	1	L9		
7.0	OBSE	RVATION OF CONSTRUCTION	1	L9		
8.0	LIMIT	ATIONS	1	L9		
REFEF	RENCES	3	2	21		
FIGUR	ES					

Vicinity Map Figure 1 Site Plan Figure 2

EXPIRES: 12/31/24

TABLE OF CONTENTS

CPT Results

۸۱	D	D		NΤ			ES
А	М	М	ᄆ	N	וט	ı	ヒン

BIOLO	
Appendix A	
Field Explorations	A-1
Laboratory Testing	A-2
Exploration Key	Table A-1
Soil Classification System	Table A-2
Boring Logs	Figures A-1 – A-14
Atterberg Limits Test Results	Figure A-15
Summary of Laboratory Data	Figure A-16
Appendix B	
Cone Penetration Testing	B-1

N V 15

ACRONYMS AND ABBREVIATIONS

AC asphalt concrete

ACP asphalt concrete pavement

ASCE American Society of Civil Engineers

ASTM American Society for Testing and Materials

BGS below ground surface CPT cone penetration test

DCP dynamic cone penetrometer

DEQ Oregon Department of Environmental Quality gravitational acceleration (32.2 feet/second²)

H:V horizontal to vertical

MCE maximum considered earthquake
ODOT Oregon Department of Transportation

OSHA Occupational Safety and Health Administration

OSSC 2021 Oregon Standard Specifications for Construction

PCC portland cement concrete
pcf pounds per cubic foot
pci pounds per cubic inch
PG performance grade
psi pounds per square inch
psf pounds per square foot

PVC polyvinyl chloride

SOSSC State of Oregon Structural Specialty Code

SPT standard penetration test

μm micrometer

1.0 INTRODUCTION

NV5 is pleased to submit this report of geotechnical engineering services for the Panzer Nursery development located at 17980 West Baseline Road in Beaverton, Oregon. The site location relative to surrounding physical features is shown on Figure 1. Acronyms and abbreviations used herein are defined above, immediately following the Table of Contents.

Based on a preliminary layout provided, we understand the project will consist of single-family residences; three- to five-plex townhomes; and apartment buildings up to four stories tall, some of which may be mixed-use units with commercial space on the ground floor. Structural loads were unavailable at the time this report was prepared; however, we have assumed maximum column loads may range up to 200 kips and perimeter footing loads for walls may range up to 5 kips per lineal foot. Floor slab loads are expected to be less than 100 psf. The site is relatively level; as such, we anticipate cuts and fills will be less than a couple feet each, with the exception of foundation and utilities excavations.

2.0 SCOPE OF SERVICES

The purpose of our services was to explore subsurface conditions at the site and provide geotechnical engineering recommendations for design and construction of the proposed development. Specifically, we completed the following scope of services:

- Reviewed readily available, published geologic data and our in-house files for existing information on subsurface conditions at the site.
- Coordinated and managed the field explorations, including public utility locates and scheduling subcontractors and NV5 staff.
- Completed the following subsurface explorations and testing at the site:
 - Drilled 14 borings to depths between 16.5 and 31.5 feet BGS.
 - Advanced two CPT probes to depths of approximately 55.5 and 56 feet BGS, conducted pore pressure dissipation tests in each CPT, and performed seismic shear wave testing every 3 meters in one CPT.
 - Performed infiltration testing in three borings at depths between of 3 and 5 feet BGS.
 - Performed five DCP tests near proposed new roads.
- Collected disturbed soil samples for laboratory testing and maintained a log of encountered soil and groundwater conditions in the borings.
- Completed the following laboratory testing on select soil samples:
 - Thirty-nine moisture content determinations in general accordance with ASTM D2216
 - Ten particle-size analyses in general accordance with ASTM D1140
 - Four Atterberg limits test in general accordance with ASTM D4318
- Provided recommendations for site preparation, grading and drainage, demolition, stripping depths, fill type for imported material, compaction criteria, trench excavation and backfill, use of on-site soil, and wet/dry weather earthwork.
- Evaluated groundwater conditions at the site and provided general recommendations for dewatering during construction and subsurface drainage.
- Provided recommendations for the use of on-site native fill material to support slabs-ongrade.

- Provided geotechnical engineering recommendations for design and construction of shallow spread foundations, including allowable design bearing pressure and minimum footing depth and width.
- Provided recommendations for preparation of the subgrade for floor slabs.
- Provided design criteria recommendations for conventional retaining structures, including lateral earth pressures, backfill, compaction, and drainage.
- Provided recommendations for AC pavement design and pavement subgrade preparation for on-site access roads for a range of vehicle traffic.
- Provided seismic coefficients in accordance with ASCE 7-16.
- Prepared this geotechnical engineering report that presents our findings, conclusions, and recommendations.

3.0 BACKGROUND

At the time of this report, NV5 is currently preparing a Phase I Environmental Site Assessment for the site, which has not yet been issued. However, based on research for the environmental report, we understand prior to being developed with greenhouses and associated buildings for Panzer Nursery, the site was developed with three apparent residences and outbuildings in the northwestern portion of the site. The western half of the site was filled prior to 1990 during the redevelopment of SW 185th Avenue.

4.0 SITE CONDITIONS

4.1 GEOLOGIC SETTING

The site is located in the Tualatin Basin of the Puget Sound-Willamette Valley physiographic province, a tectonically active lowland located along the convergent Cascadia margin (Orr and Orr, 1999). The Tualatin Basin is formed by a gentle syncline between the uplifted Coast Ranges to the west, the Chehalem Mountains to the south, and the Tualatin Mountains to the north and east. The Tualatin Mountains have been uplifted along northwesterly oriented faults, including the steeply dipping Portland Hills fault located along the eastern flank of the mountains.

The near-surface geologic unit mapped at the site is the fine-grained facies of the Quaternary flood deposits (Madin, 1990). The unit consists of unconsolidated silt and sand deposited by catastrophic floods associated with the sudden release of waters from glacial Lake Missoula during the late Pleistocene. Many dozens of these Missoula floods occurred between approximately 15,500 and 12,500 years ago (and perhaps during earlier glaciations). Flood waters several hundred feet deep swept out of the Columbia Gorge and over the lowlands of the Portland area. The thickness of the flood deposits in the site vicinity is approximately 30 to 50 feet.

The Hillsboro Formation, aka the Sandy River Mudstone equivalent, underlies the Quaternary flood deposits. The thickness of the unit in the site vicinity is approximately 250 feet (Madin, 1990). The Hillsboro Formation is typically comprised of stiff, gray to brown, silty clay (Madin, 2009).

Basement rocks underlying the Sandy River Mudstone equivalent in the site vicinity consist of the Miocene Columbia River Basalts, emplaced approximately 17 million to 6 million years ago in the Portland area (Madin, 1990). The Columbia River Basalts are exposed in the Tualatin Basin in the highlands surrounding the valley and in a group of mountains south of the site, which include Cooper Mountain and Bull Mountain. The Columbia River Basalts consist of thick flows of basalt erupted from fissures in eastern Oregon, Washington, and western Idaho that traveled down the ancient Columbia River Gorge to fill the lowland areas around Portland.

4.2 SURFACE CONDITIONS

The approximately 28-acre site is bound by West Baseline Road and SW Stepping Stone Drive to the north, SW 185th Avenue to the west, residential structures to the south, and SW 179th Avenue and residential structures to the east. The western half of the site generally ranges in elevation between approximately 190 and 194 feet based on Google Earth, excluding the fill slope along the western edge and northwest corner of the site. The eastern half of the site slopes down gently from a high elevation of approximately 204 feet at the southeast corner toward the northwest. The fill slope along the west edge and northwest corner of the site ranges up to approximately 14 feet tall and is approximately 2.5H:1V or flatter. The slope transitions into an Ultrablock retaining wall at the corner of the intersection of SW 185th with SW Stepping Stone Drive. The site is currently occupied by Panzer Nursery consisting of associated greenhouses, an office space, warehouses, chemical mixing/dosing buildings, a shop, a 316,000-gallon storage tank, and several other structures. A residential home with a pool, garage, and surrounding landscaping with trees is located in the south-central portion of the site. The driveway areas between the buildings are surfaced with PCC and gravel. A small parking lot and entrance driveway in the northeastern portion of the site is surface with AC.

4.3 SUBSURFACE CONDITIONS

4.3.1 General

We explored subsurface conditions at the site by drilling 14 borings (B-1 through B-14) to depths between 16.5 and 31.5 feet BGS and advancing 2 CPT probes (CPT-1 and CPT-2) to depths of approximately 55.5 and 56 feet BGS. Figure 2 shows the approximate exploration locations. A description of the boring explorations and laboratory testing program, the boring logs, and the results of laboratory testing are presented in Appendix A. A description of the CPT program and the results of the CPT probes are presented in Appendix B.

4.3.2 Surficial Material

All the borings were surfaced with either AC, crushed rock, or soil. The AC was observed in borings B-1, B-13, and B-14 and ranges between 2.5 and 7 inches thick and is underlain by 8 to 13 inches of aggregate base. The remaining borings were surfaced with either crushed rock or soil. When crushed rock was encountered at the surface, it ranges between 3 and 15 inches thick.

4.3.3 Undocumented Fill

Undocumented fill was encountered to depths between 2.5 and 12.5 feet BGS in borings B-2, B-5, B-6, B-7, B-10, and B-11. The fill along the western edge of the site (B-5 through B-7) extends approximately 4 to 12.5 feet BGS, which corresponds to the height of the adjacent slope leading to SW 185th Avenue. The undocumented fill generally consists of medium stiff to very

stiff silt. A soft zone was encountered at 5 feet BGS and trace woody debris was encountered at 10 feet BGS in B-7. Trace amounts of organics (rootlets) and debris (asphalt and concrete cuttings) were also encountered at various locations and depths in the fill. Laboratory testing indicates that the moisture content of the undocumented fill ranged from 26 and 37 percent at the time of our explorations.

4.3.4 Silt and Clay

Beneath the fill or surficial materials, soil conditions generally consist of fine-grained silt and clay with variable sand content to the depths explored. The silt and clay range from soft to very stiff but is generally medium stiff. The CPT probes indicate the fine-grained soil extends to the maximum depth explored with thin interbeds of sandy silt throughout. Results of an Atterberg limits test indicate the silt and clay exhibit low plasticity. Laboratory testing indicates that the moisture content of the silt and clay ranged from 29 to 45 percent at the time of our explorations.

4.3.4 Groundwater

Groundwater was observed at depths between 6.5 and 9.5 feet BGS in most of the borings. The groundwater was observed at deeper depths, between 12.5 and 22.5 feet BGS, along the western edge of the site where fill was encountered. Considering the results of our explorations and observations, we expect perched groundwater at shallow depths at the site during the wet season. Pore pressure dissipation testing in the CPT probes indicated groundwater is between 5.3 and 6 feet BGS. The depth to groundwater may fluctuate in response to seasonal changes, changes in surface topography, and other factors not observed during our explorations.

4.4 SEISMIC HAZARDS

4.4.1 Liquefaction and Cyclic Softening

Liquefaction is a phenomenon caused by a rapid increase in pore water pressure that reduces the effective stress between soil particles to near zero. The excessive buildup of pore water pressure results in the sudden loss of shear strength in a soil. Granular soil, which relies on interparticle friction for strength, is susceptible to liquefaction until the excess pore pressures can dissipate. Sand boils and flows observed at the ground surface after an earthquake are the result of excess pore pressures dissipating upwards, carrying soil particles with the draining water. In general, loose, saturated sand soil with low silt and clay content is the most susceptible to liquefaction. Low plasticity, sandy silt may be moderately susceptible to liquefaction under relatively high levels of ground shaking. Non-plastic and low plasticity, finegrained material may be subject to cyclic softening from an increase in pore water pressure and a reduction in strength during seismic shaking; however, the relatively poor drainage characteristics of silt deposits inhibit the occurrence of a rapid decrease in volume.

We performed liquefaction analysis using the CPT results in accordance with Boulanger and Idriss (2014) employing the depth weighting methods from Cetin et al. (2009). Our laboratory testing results and analyses indicate zones of low plasticity, predominantly fine-grained soil have moderate potential for strain softening during a design-level seismic event. Based on the results of our laboratory testing and CPT results, zones of the underlying silt and clay are susceptible to strain softening but the potential for liquefaction and associated settlement is low.

4.4.2 Lateral Spreading

Lateral spreading is a liquefaction-related seismic hazard. Areas subject to lateral spreading are typically gently sloping or flat sites underlain by liquefiable sediment adjacent to an open face, such as a riverbank. Based on the soil encountered at the site, lateral spreading is not considered a hazard at the site.

4.5 INFILTRATION TESTING

Infiltration testing was performed in three borings (B-5, B-6, and B-10). The infiltration testing was completed at depths between 3 and 5 feet BGS. The infiltration testing procedures are described in Appendix A, and the results of the infiltration and laboratory testing are summarized in Table 1.

Location	Depth (feet BGS)	Observed Infiltration Rate ¹ (inches per hour)	Fines Content ² (percent)	Soil Type at Test Depth
B-5	4	0.3	89	SILT, minor sand, trace gravel
B-6	5	1.2	92	FILL - SILT, minor sand, trace gravel and organics
B-10	3	0.5	86	CLAY, minor sand and gravel

Table 1. Infiltration and Laboratory Testing Summary

4.6 DCP TESTING

We conducted DCP testing in general accordance with ASTM D6951 to estimate the resilient modulus of the subgrade in borings B-1, B-3, B-4, B-8, and B-12. We used least squares regression to determine the slopes of the DCP curves and the equation from the ODOT Pavement Design Guide using a correction factor of $C_f = 0.35$ for estimating the subgrade resilient moduli (ODOT, 2019). Our estimates of subgrade resilient modulus at each test location are presented in Table 2.

Table 2. DCP Test Results

Exploration	Estimated Subgrade Resilient Modulus (psi)
B-1	3,470
B-3	4,340
B-4	4,290
B-8	3,690
B-12	5,940

^{1.} In-situ infiltration rate observed in the field

^{2.} Fines content - material passing the U.S. Standard No. 200 sieve

5.0 DESIGN RECOMMENDATIONS

5.1 GENERAL

The following sections provide our design recommendations for the proposed development. All site preparation and structural fill should be prepared as recommended in the "Construction Recommendations" section.

5.2 SHALLOW FOUNDATIONS

5.2.1 General

Based on the assumed foundation loads, the proposed development can be supported by shallow foundations established on firm native soil, structural fill overlying firm native soil, or minimum 2-foot-thick granular pads overlying existing fill.

Footings located within the undocumented fill area, presumably approximately the western one-third of the site, should be supported on minimum 2-foot-thick gravel pads underlain by firm undocumented fill or the undocumented fill can be removed and replaced as structural fill. If loose or soft material, organic material, unsuitable fill, or prior topsoil zones are encountered for footing subgrades, over-excavation for granular pads or thicker granular pads may be necessary. Granular pads should extend 6 inches beyond the margins of the footings for every foot excavated below the footing's base grade. The granular pads should consist of imported granular material, as defined in the "Structural Fill" section. The imported granular material should be compacted to not less than 95 percent of the maximum dry density, as determined by ASTM D1557, or until well keyed, as determined by one of our geotechnical staff. We recommend that a member of our geotechnical staff observe the prepared footing subgrade.

5.2.2 Dimensions and Capacities

Shallow footings should be proportioned for a maximum allowable soil bearing pressure of 2,000 psf. This bearing pressure is a net bearing pressure and applies to the total of dead and long-term live loads and can be increased by one-half when considering seismic or wind loads. The weight of the footing and overlying backfill can be ignored in calculating footing loads. Isolated spread footings and continuous spread footings should be at least 18 and 12 inches wide, respectively. The bottom of exterior footings should be founded at least 18 inches below the lowest adjacent grade. Interior footings should be founded at least 12 inches below the top of the floor slab/ground surface.

5.2.3 Settlement

Based on our experience with similar soil, total static post-construction settlement should be less than 1 inch, with differential settlement of approximately one-half the total over a 50-foot span.

5.2.4 Resistance to Sliding

Lateral loads on footings can be resisted by passive earth pressure on the sides of the structure and by friction on the base of the footings. We recommend a friction coefficient of 0.45 for computing the friction capacity of building foundations that bear on granular pads or 0.30 for foundations bearing on native soil. Our analysis indicates that the available passive earth pressure for footings confined by structural fill or footings constructed in direct contact with the undisturbed native soil or structural fill is 350 pcf. Typically, the movement required to develop

the available passive resistance may be relatively large; therefore, we recommend using a reduced passive pressure of 250 pcf equivalent fluid pressure. Adjacent floor slabs, pavement, or the upper 12-inch depth of adjacent, unpaved areas should not be considered when calculating passive resistance. In addition, in order to rely on the recommended passive resistance, the groundwater level must be below the base of the footing and a minimum of 5 feet of horizontal clearance must exist between the face of the footings and any adjacent downslopes.

5.3 FLOOR SLABS

A subgrade modulus of 150 pci can be used to design the floor slabs on subgrade prepared as described below. A minimum 6-inch-thick layer of base rock should be placed and compacted over the prepared subgrade to assist as a capillary break. The base rock should be crushed rock or crushed gravel and sand meeting the requirements outlined in the "Structural Fill" section. The imported granular material should be placed in one lift and compacted to not less than 95 percent of the maximum dry density, as determined by ASTM D1557. Floor slab base rock should be replaced if it becomes contaminated with excessive fines (greater than 5 percent by dry weight passing the U.S. Standard No. 200 sieve). Vapor barriers are often required by flooring manufacturers to protect flooring and flooring adhesives. Many flooring manufacturers will warrant their product only if a vapor barrier is installed according to their recommendations. Selection and design of an appropriate vapor barrier (if needed) should be based on discussions among members of the design team. We can provide additional information to assist you with your decision.

5.4 RETAINING STRUCTURES

5.4.1 Assumptions

Our retaining wall design recommendations are based on the following assumptions: (1) the walls consist of conventional, cantilevered retaining walls, (2) the walls are less than 8 feet in height, (3) the backfill is drained, and (4) the backfill has a slope flatter than 4H:1V. Reevaluation of our recommendations will be required if the retaining wall design criteria for the project varies from these assumptions.

5.4.2 Wall Design Parameters

Retaining structures free to rotate slightly around the base should be designed for active earth pressures using an equivalent fluid unit pressure of 35 pcf. If retaining walls are restrained against rotation during backfilling, they should be designed for an at-rest earth pressure of 55 pcf. For embedded building walls, a superimposed seismic lateral force should be calculated based on a dynamic force of 7H² pounds per lineal foot of wall, where H is the height of the wall in feet, and applied at 0.6H from the base of the wall. If other surcharges (e.g., slopes steeper than 4H:1V, foundations, vehicles, etc.) are located within a horizontal distance from the back of a wall equal to twice the height of the wall, additional pressures may need to be accounted for in the wall design. Our office should be contacted for appropriate wall surcharges based on the actual magnitude and configuration of the applied loads.

The wall footings should be designed in accordance with the guidelines provided in the "Shallow Foundations" section.

5.4.3 Wall Drainage and Backfill

The above design parameters have been provided assuming back-of-wall drains will be installed to prevent buildup of hydrostatic pressures behind all walls. If a drainage system is not installed, our office should be contacted for revised design forces. The backfill material placed behind the walls and extending a horizontal distance of ½H, where H is the height of the retaining wall, should consist of retaining wall select backfill placed and compacted in conformance with the "Structural Fill" section.

A minimum 6-inch-diameter, perforated collector pipe should be placed at the base of the walls. The pipe should be embedded in a minimum 2-foot-wide zone of angular drain rock that is wrapped in a drainage geotextile fabric and extends up the back of the wall to within 1 foot of the finished grade. The drain rock and drainage geotextile fabric should meet specifications provided in the "Materials" section. The perforated collector pipes should discharge at an appropriate location away from the base of the wall. The discharge pipe(s) should not be tied directly into stormwater drain systems, unless measures are taken to prevent backflow into the wall's drainage system.

Settlement of up to 1 percent of the wall height commonly occurs immediately adjacent to the wall as the wall rotates and develops active lateral earth pressures. Consequently, we recommend that construction of flatwork adjacent to retaining walls be postponed at least four weeks after backfilling of the wall, unless survey data indicates that settlement is complete prior to that time.

5.5 SEISMIC DESIGN CRITERIA

The soil profile is consistent with Site Class D in accordance with the 2019 SOSSC, which refers to ASCE 7-16. The values presented in Table 3 can be used to compute design levels of ground shaking.

Table 3. Seismic Design Parameters*

Parameter	Short Period (T _s)	1 Second Period (T ₁)			
MCE Spectral Acceleration, S	S _s = 0.891 g	$S_1 = 0.415 g$			
Site Class	D				
Site Coefficient, F	F _a = 1.144	F _v = 1.885			
Adjusted Spectral Acceleration, S _M	S _{MS} = 1.019 g	S _{M1} = 0.782 g			
Design Spectral Response Acceleration Parameters, S _D	S _{DS} = 0.679 g	S _{D1} = 0.522 g			

^{*} The above parameters can be used provided the seismic response coefficient (C_s) is determined according to the exception in ASCE 7-16 Section 11.4.8 or else a site-specific response analysis will be required.

5.6 PAVEMENT

New pavement should be constructed on competent subgrade or new engineered fill prepared in conformance with the "Site Preparation" and "Structural Fill" sections. We do not have specific information on the frequency and type of vehicles expected at the site. Based on our experience with similar projects, we anticipate that traffic will consist mainly of passenger vehicles and occasional two-axle trucks, such as delivery trucks or garbage trucks. We have assumed that all roads are private. Design for city or county roads may require thicker pavement sections than those provided in this report.

Our pavement recommendations are based on the following assumptions:

- A resilient modulus of 20,000 psi was estimated for the aggregate base.
- A resilient modulus of 4,000 psi for subgrades prepared as recommended in this report.
- Initial and terminal serviceability indices of 4.2 and 2.5, respectively.
- Reliability of 75 percent and standard deviation of 0.45.
- Structural coefficients of 0.42 and 0.14 for the AC and aggregate base, respectively.
- The design life of the pavement is 20 years.
- Zero growth over the design life.
- Trucks will have two axles.

If any of these assumptions vary from project design values, our office should be contacted with the appropriate information so that the pavement designs can be revised. Our pavement design recommendations and assumed traffic scenarios are summarized in Table 4. The design team should select the most appropriate design traffic level. The recommended pavement sections are capable of supporting an occasional 75,000-pound fire truck.

Table 4. Pavement Section Thickness

Traffic	Levels	Pavement Section Thicknesses on On-Site Subgrade ¹ (inches)		Pavement Section Thicknesses on Cement-Amended Subgrade ^{1,2} (inches)	
Cars/Day	Cars/Day Trucks/Day		Base Rock	AC	Base Rock
200	0	2.5	7.0	2.5	4.0
400 5		3.0	8.0	3.0	4.0
400 10		3.0	10.0	3.0	4.0

^{1.} All thicknesses are intended to be the minimum acceptable values.

The AC, aggregate base, and cement amendment should meet the requirements outlined in the "Materials" section. Our pavement design assumes construction will be completed during an extended period of dry weather. Wet weather construction could require an increased thickness of aggregate base.

^{2.} Compressive strength of cement-amended soil should be at least 100 psi.

Construction traffic should be limited to non-structural portions of the site or haul roads. Construction traffic should not be allowed on new pavement. If construction traffic is to be allowed on newly constructed road sections, an allowance for this additional traffic will need to be made in the design pavement section.

5.7 DRAINAGE CONSIDERATIONS

5.7.1 Temporary

During earthwork at the site, the contractor should be made responsible for temporary drainage of surface water as necessary to prevent standing water and/or erosion at the working surface.

5.7.2 Site Drainage

We recommend that all roof drains be connected to a tightline leading to storm drain facilities. Pavement surfaces and open space areas should be sloped such that surface water runoff is collected and routed to suitable discharge points. We also recommend that ground surfaces adjacent to the buildings be sloped away from the buildings to facilitate drainage away from the buildings. Trapped planter areas should not be created adjacent to pavement and structures without providing means for positive drainage (e.g., swales or catch basins).

5.7.3 Foundation Drains

Foundation drains are recommended for the proposed buildings due to the relatively shallow perched groundwater and relatively impervious fine-grained soil at the site. Foundation drains should be constructed at a minimum slope of approximately ½ percent and pumped or drained by gravity to a suitable discharge. The perforated drainpipe should not be tied to a stormwater drainage system without backflow provisions. Foundation drains should consist of 4-inch-diameter, perforated drainpipe embedded in a minimum 2-foot-wide zone of crushed drain rock wrapped in drainage geotextile that extends to within 12 inches of the ground surface. The invert elevation of the drainpipe should be installed at least 18 inches below the elevation of the floor slab. The drain rock and geotextile should meet the requirements specified in the "Materials" section.

5.8 INFILTRATION SYSTEMS

The results of our infiltration testing indicate that the on-site soil has very low infiltration capacity. In addition, groundwater seepage was observed at depths between 6.5 and 9.5 feet BGS in most of the borings and between 12.5 and 22.5 feet BGS in the deep fill area on the west side of the site. Pore pressure dissipation testing in the CPTs indicated static groundwater is between 5.3 and 6 feet BGS. Jurisdictions typically require a minimum separation of 5 feet from the base of infiltration system to the seasonal high groundwater. Infiltration into the undocumented fill soil, which ranges in depth up to approximately 12.5 feet BGS in the western portion of the site, should also not be allowed.

The infiltration rates shown in Table 1 are short-term field rates and factors of safety have not been applied. If infiltration facilities will be used, correction factors should be applied to the measured infiltration rates by the civil engineer to account for soil variations and the potential for long-term clogging due to siltation and buildup of organic material, depending on the proposed length, location, and type of infiltration facility. We recommend a minimum factor of safety of at least 2 be applied to the field infiltration values.

The actual depths and estimated infiltration rates can vary significantly from these values. Based on the shallow depth to groundwater and very low tested infiltration rates, we recommend any infiltration system at the site not be the sole source for stormwater infiltration and facilities have a redundant overflow system. We recommend the installation of stormwater facilities be observed by a qualified geotechnical engineer or representative under their supervision to evaluate if soil conditions are consistent with subsurface conditions encountered during our explorations.

5.9 PERMANENT SLOPES

Permanent cut and fill slopes should not exceed 2H:1V. Fill slopes should be over-built by at least 12 inches and trimmed back to the required slope to maintain a firm face. Access roads and pavement should be located at least 5 feet from the top of cut and fill slopes. The setback should be increased to 10 feet for buildings.

The slopes should be planted with appropriate vegetation to provide protection against erosion as soon as possible after grading. Surface water runoff should be collected and directed away from slopes to prevent water from running down the face of the slope.

6.0 CONSTRUCTION RECOMMENDATIONS

6.1 SITE PREPARATION

6.1.1 Demolition

Demolition includes removal of existing structures, surficial material, abandoned utilities, and any subsurface elements from previous on-site structures. Demolished material should be transported off site for disposal. Excavations remaining from site preparation activities should be backfilled with structural fill where below planned site grades. The base of excavations should be excavated to expose firm subgrade before filling. Utility lines abandoned under new structural elements should be completely removed and backfilled with structural fill in accordance with the recommendations in the "Structural Fill" section. Soft soil encountered in utility line excavations should be removed and replaced with structural fill. Concrete debris, AC pavement, and base rock can be used as structural fill, provided it is processed to meet the requirements for recycled material in the "Structural Fill" section.

Old basement/crawl space areas or voids resulting from removal of improvements or loose soil in utility lines should be backfilled with compacted structural fill, as discussed in the "Structural Fill" section. The bottom of such excavations should be excavated to expose a firm subgrade before filling and their sides sloped at a minimum of 1H:1V to allow for more uniform compaction at the edges of the excavations.

6.1.2 Undocumented Fill

Undocumented fill containing trace amounts of deleterious material, including wood debris, roots, and asphalt cuttings, was encountered along the western edge of the site. Fill was also encountered along the northwest corner of the site and in one boring on the southern portion of the site (B-2). In general, the fill consists of medium stiff to stiff silt, with the exception of a soft zone encountered at 5 feet BGS in B-7. The approximate boring locations and associated undocumented fill depths are shown on Figure 2. We recommend footings founded on

undocumented fill be supported on gravel pads, as described in the "Shallow Foundations" section. If undocumented fill is encountered beneath building slabs or pavement areas, the fill should be improved in the upper 12 inches, either by removing and replacing with structural fill, scarifying and recompacting, or cement treatment. Alternatively, the undocumented fill can be completely removed and moisture conditioned and replaced in lifts as structural fill.

6.1.3 Subgrade Evaluation

A member of our geotechnical staff should observe the exposed subgrade after stripping, demolition, and site cutting have been completed to determine if there are areas of unsuitable or unstable soil. The subgrade should be proof rolled with a fully loaded dump truck or similar heavy, rubber tire construction equipment to identify soft, loose, or unsuitable areas after subgrade compaction is complete. Proof rolling should be observed by a qualified geotechnical engineer or their representative. Areas that appear to be too wet and soft to support proof rolling equipment should be evaluated by probing and prepared in accordance with the recommendations for wet weather construction presented in the "Construction Considerations" section.

6.2 CONSTRUCTION CONSIDERATIONS

The fine-grained soil present on this site is easily disturbed. If not carefully executed, site preparation, utility trench work, and roadway excavation can create extensive soft areas and significant repair costs can result. Earthwork planning, regardless of the time of year, should include considerations for minimizing subgrade disturbance.

If construction occurs during or extends into the wet season or if the moisture content of the surficial soil is more than a couple percentage points above optimum, site stripping and cutting may need to be accomplished using track-mounted equipment. Likewise, the use of granular haul roads and staging areas will be necessary for support of construction traffic during the rainy season or when the moisture content of the surficial soil is more than a few percentage points above optimum. The base rock thickness for pavement areas is intended to support postconstruction design traffic loads. This design base rock thickness may not support construction traffic or pavement construction when the subgrade soil is wet. Accordingly, if construction is planned for periods when the subgrade soil is wet, staging and haul roads with increased thicknesses of base rock will be required. The amount of staging and haul road areas, as well as the required thickness of granular material, will vary with the contractor's sequencing of a project and type/frequency of construction equipment. Based on our experience, between 12 and 18 inches of imported granular material is generally required in staging areas and between 18 and 24 inches in haul roads areas. Stabilization material may be used as a substitute, provided the top 4 inches of material consists of imported granular material. The actual thickness will depend on the contractor's means and methods and, accordingly, should be the contractor's responsibility. In addition, a geotextile fabric should be placed as a barrier between the subgrade and imported granular material in areas of repeated construction traffic. The imported granular material, stabilization material, and geotextile fabric should meet the specifications in the "Materials" section.

As an alternative to thickened crushed rock sections, haul roads and utility work zones may be constructed using cement-amended subgrades overlain by a crushed rock wearing surface. If

this approach is used, the thickness of granular material in staging areas and along haul roads can typically be reduced to between 6 and 9 inches. This recommendation is based on an assumed minimum unconfined compressive strength of 100 psi for subgrade amended to a depth of 12 to 16 inches. The actual thickness of the amended material and imported granular material will depend on the contractor's means and methods and, accordingly, should be the contractor's responsibility. Cement amendment is discussed in the "Materials" section.

6.3 EXCAVATION

6.3.1 General

Conventional earthmoving equipment in proper working condition should be capable of making necessary excavations for pavement, foundations, and utilities. We recommend that excavation be performed by a track-mounted excavator using a smooth-blade bucket.

6.3.2 Trench Cuts and Trench Shoring

Trench cuts should stand vertical to a depth of approximately 4 feet, provided groundwater seepage does not occur. Open excavation techniques may be used to excavate trenches with depths between 4 and 10 feet BGS, provided the walls of the excavation are cut at a slope of 1H:1V and groundwater seepage is not present. Sloughing and caving will likely occur if the excavation extends below the groundwater table or if seepage is present. The walls of the trench should be flattened or braced for stability if excessive sloughing occurs and the area dewatered if seepage is encountered.

Excavations should not undermine adjacent utilities, foundations, walkways, streets, or other hardscapes, unless special shoring or underpinned support is provided. Unsupported excavations should not be conducted within a downward and outward projection of a 1H:1V line from 5 feet outside the edge of an adjacent structural feature.

If box shoring is used, it should be understood that box shoring is a safety feature used to protect workers and does not prevent caving. If excavations are left open for extended periods of time, caving of the sidewalls may occur. The presence of caved material will limit the ability to properly backfill and compact the trenches. The contractor should be prepared to fill voids between the box shoring and the sidewalls of the trenches with sand or gravel before caving occurs.

If shoring is used, we recommend that the type and design of the shoring system be the responsibility of the contractor, who is in the best position to choose a system that fits the overall plan of operation.

6.3.3 Dewatering

We anticipate that a sump located within the trench excavation likely will be sufficient to remove accumulated water, depending on the amount and persistence of water seepage and the length of time the trench is left open. Flow rates for dewatering are likely to vary depending on location, soil type, and the season during which the excavation occurs. Dewatering systems should be capable of adapting to variable flows. If groundwater and fine-grained soil are present in the base of the utility trench excavation, we recommend over-excavating the trench by 12 to 18 inches and placing trench stabilization material in the base.

6.3.4 Safety

All excavations should be made in accordance with applicable OSHA requirements and regulations of the state, county, and local jurisdiction. While this report describes certain approaches to excavation and dewatering, the contract documents should specify that the contractor is responsible for selecting excavation and dewatering methods, monitoring the excavations for safety, and providing shoring (as required) to protect personnel and adjacent structural elements.

6.4 MATERIALS

6.4.1 Structural Fill

6.4.1.1 General

Structural fill includes fill beneath foundations, slabs, pavement, any other areas intended to support structures, or within the influence zones of structures. Structural fill should be free of organic material and other deleterious material and, in general, should consist of particles no larger than 4 inches in diameter. A brief characterization of some of the acceptable materials and our recommendations for their use as structural fill are provided below.

6.4.1.2 On-Site Soil

The soil at the site is fine grained and can be used for structural fill, provided it can be adequately moisture conditioned. The site soil is sensitive to small changes in moisture content and is highly susceptible to disturbance when wet. Use of the on-site material as structural fill will not be possible during the wet season, which typically extends from mid-October to early June.

We estimate the optimum moisture content for compaction to be approximately 14 to 18 percent for the on-site soil. Optimum compaction typically occurs within 3 percent of optimum moisture. Typically, the moisture content for the on-site soil will be greater than the anticipated optimum moisture content required for adequate compaction. It is likely that even during the dry season, drying will be required to achieve adequate compaction. We recommend using imported granular material for structural fill if the on-site material cannot be properly moisture conditioned.

When used as structural fill, the on-site soil should be placed in lifts with a maximum uncompacted thickness of 6 to 8 inches. The soil should be compacted to not less than 92 percent of the maximum dry density, as determined by ASTM D1557.

6.4.1.3 Imported Granular Material

Imported granular material used for structural fill should be pit- or quarry-run rock, crushed rock, or crushed gravel and sand. Imported granular material should be fairly well graded between coarse and fine material, should have less than 6 percent by dry weight passing the U.S. Standard No. 200 sieve, and should have at least two mechanically fractured faces. Material with a higher fines content is permissible provided compaction can be achieved.

When used as structural fill, imported granular material should be placed in lifts with a maximum uncompacted thickness of 12 inches and compacted to not less than 95 percent of the maximum dry density, as determined by ASTM D1557.

6.4.1.4 Stabilization Material

Stabilization material should consist of pit- or quarry-run rock, crushed rock, or crushed gravel and sand that consists of 4- to 6-inch-minus material. It should have less than 5 percent by dry weight passing the U.S. Standard No. 4 sieve and at least two mechanically fractured faces. The material should be free of organic material and other deleterious material. Stabilization material should be placed in one lift and compacted to a firm condition.

Where the stabilization material is used to stabilize soft subgrade beneath pavement or construction haul roads, a geotextile should be placed as a barrier between the soil subgrade and the imported granular material. The geotextile fabric should meet the specifications provided below for subgrade geotextiles. Geotextile is not required where stabilization material is used at the base of utility trenches.

6.4.1.5 Trench Backfill

Trench backfill placed beneath, adjacent to, and for at least 12 inches above utility lines (i.e., the pipe zone) should consist of durable, well-graded granular material with a maximum particle size of $1\frac{1}{2}$ inches, should have less than 10 percent fines by dry weight, and should have at least two mechanically fractured faces. The pipe zone backfill should be compacted to at least 90 percent of the maximum dry density, as determined by ASTM D1557, or as required by the pipe manufacturer or local building department.

Within roadway alignments, the remainder of the trench backfill up to the subgrade elevation should consist of durable, well-graded granular material with a maximum particle size of $2\frac{1}{2}$ inches, should have less than 10 percent fines by dry weight, and should have at least two mechanically fractured faces. This material should be compacted to at least 92 percent of the maximum dry density, as determined by ASTM D1557, or as required by the pipe manufacturer or local building department. The upper 3 feet of the trench backfill should be compacted to at least 95 percent of the maximum dry density, as determined by ASTM D1557.

Outside of structural improvement areas (e.g., roadway alignments or building pads), trench backfill placed above the pipe zone may consist of general fill material that is free of organic material and material over 6 inches in diameter. This general trench backfill should be compacted to at least 90 percent of the maximum dry density, as determined by ASTM D1557, or as required by the pipe manufacturer or local building department.

6.4.1.6 Aggregate Base Rock

Imported granular material used as base rock for building floor slabs and pavement should consist of ¾- or 1½-inch-minus material. The aggregate should have less than 6 percent by dry weight passing the U.S. Standard No. 200 sieve and should have at least two fractured faces. The aggregate base should be compacted to not less than 95 percent of the maximum dry density, as determined by ASTM D1557.

6.4.1.7 Retaining Wall Select Backfill

Backfill material placed behind retaining walls and extending a horizontal distance of ½H, where H is the height of the retaining wall, should consist of imported granular material. We

recommend the select granular wall backfill be separated from general fill, native soil, and/or topsoil using a geotextile fabric that meets the specifications provided below for drainage geotextiles.

The wall backfill should be compacted to a minimum of 95 percent of the maximum dry density, as determined by ASTM D1557. However, backfill located within a horizontal distance of 3 feet from a retaining wall should only be compacted to approximately 90 percent of the maximum dry density, as determined by ASTM D1557. Backfill placed within 3 feet of the wall should be compacted in lifts less than 6 inches thick using hand-operated tamping equipment (such as a jumping jack or vibratory plate compactor). If flatwork (sidewalks or pavement) will be placed atop the wall backfill, we recommend that the upper 2 feet of material be compacted to 95 percent of the maximum dry density, as determined by ASTM D1557.

6.4.1.8 Drain Rock Material

Drain rock should consist of open-graded, angular, granular material with a maximum particle size of 2 inches. The material should be free of roots, organic material, and other unsuitable material and should have less than 2 percent by dry weight passing the U.S. Standard No. 200 sieve (washed analysis).

6.4.1.9 Recycled Material

AC, conventional concrete, and oversized rock may be used as fill if they are processed to meet the requirements for their intended use and do not pose an environmental concern. Processing includes crushing and screening, grinding in place, or other methods to meet the requirements for structural fill as described above. The processed material should be fairly well graded and not contain metal, organic material, or other deleterious material. The processed material may be mixed with on-site soil or imported fill to assist in achieving the gradation requirements. Processed recycled fill should have a maximum particle size of 4 inches.

Recycled granular fill material is generally not suitable for the top 4 inches of pavement base rock or floor slab base rock. We also caution that excavation through recycled material that is placed as structural fill may be difficult. In addition, these excavations may also be prone to raveling and caving.

6.4.2 Geotextile Fabric

6.4.2.1 Separate Geotextile Fabric

A separation geotextile fabric can be placed as a barrier between silty subgrade and granular material in staging areas, haul road areas, or in areas of repeated construction traffic. The subgrade geotextile should meet the requirements in OSSC 02320 (Geosynthetics) for subgrade geotextiles and be installed in conformance with OSSC 00350 (Geosynthetic Installation).

6.4.2.2 Drainage Geotextile Fabric

Drain rock and other granular material used for subsurface drains should be wrapped in a geotextile fabric that meets the specifications provided in OSSC 00350 (Geosynthetic Installation) and OSSC 02320 (Geosynthetics) for drainage geotextiles and installed in conformance with OSSC 00350 (Geosynthetic Installation).

6.4.3 AC

The AC should be Level 2, ½-inch, dense ACP as described in OSSC 00744 (Asphalt Concrete Pavement) and compacted to 91 percent of the specific gravity of the mix, as determined by ASTM D2041. The minimum and maximum lift thickness is 2.0 and 3.0 inches, respectively, for ½-inch ACP. Asphalt binder should be performance graded and conform to PG 64-22 or better.

6.4.4 Cement Amendment

6.4.4.1 General

As an alternative to the use of imported granular material for wet weather structural fill, an experienced contractor may be able to amend the on-site soil with portland cement to obtain suitable support properties. Successful use of soil amendment depends on the use of correct mixing techniques, soil moisture content, and amendment quantities.

6.4.4.2 Subbase Stabilization

Specific recommendations based on exposed site conditions for soil amending can be provided if necessary. However, for preliminary design purposes, we recommend a target strength for cement-amended subgrade for building and pavement subbase (below aggregate base) soil of 100 psi. Successful use of soil amendment depends on use of correct techniques and equipment, soil moisture content, and the amount of cement added to the soil. The recommended percentage of cement is based on soil moisture contents at the time of placing the structural fill. Based on our experience, 5 percent cement by weight of dry soil is generally satisfactory when the soil moisture content does not exceed approximately 25 percent. If the soil moisture content is in the range of 25 to 35 percent, 6 to 8 percent by weight of dry soil is recommended. It is difficult to accurately predict field performance due to the variability in soil response to cement amendment. The amount of cement added to the soil may need to be adjusted based on field observations and performance. Moreover, depending on the time of year and moisture content levels during amendment, water may need to be applied during tilling to appropriately condition the soil moisture content. The amount of cement used during amendment should be based on an assumed soil dry unit weight of 100 pcf. For preliminary design purposes, we recommend a minimum of 6 percent cement. It is not possible to amend soil during heavy or continuous rainfall. Work should be completed during suitable conditions

We recommend cement-spreading equipment be equipped with balloon tires to reduce rutting and disturbance of the fine-grained soil. A static sheepsfoot or segmented pad roller with a minimum static weight of 40,000 pounds should be used for initial compaction of the fine-grained soil. A smooth-drum roller with a minimum applied linear force of 700 pounds per inch should be used for final compaction. The amended soil should be compacted to at least 92 percent of the achievable dry density at the moisture content of the material, as defined in ASTM D1557.

A minimum curing time of four days is required between amendment and construction traffic access. Construction traffic should not be allowed on unprotected, cement-amended subgrade. To protect the cement-amended surfaces from abrasion or damage, the finished surface should be covered with 4 to 6 inches of imported granular material.

Amendment depths for building/pavement, haul roads, and staging areas are typically on the order of 12, 16, and 12 inches, respectively. The crushed rock typically becomes contaminated with soil during construction. Contaminated base rock should be removed and replaced with clean rock in pavement areas. The actual thickness of the amended material and imported granular material for haul roads and staging areas will depend on the anticipated traffic, as well as the contractor's means and methods and, accordingly, should be the contractor's responsibility. Cement amendment should not be attempted when air temperature is below 40 degrees Fahrenheit or during moderate to heavy precipitation. Cement should not be placed when the ground surface is saturated or standing water exists.

6.4.4.3 Cement-Amended Structural Fill

On-site silt/clay soil that is not suitable for structural fill due to high moisture content may be amended and placed as fill over a subgrade prepared in conformance with the "Site Preparation" section. Cement-amended fill lift thicknesses should be limited to 12 inches. The cement ratio for general cement-amended fill can generally be reduced by 1 percent (by dry weight). Typically, a minimum curing time of four days is required between amendment and construction traffic access. Consecutive lifts of fill may be amended immediately after the previous lift has been amended and compacted (e.g., the four-day wait period does not apply). However, where the final lift of fill is a building or roadway subgrade, the four-day wait period is in effect for the final lift of cement-amended soil.

6.4.4.4 Other Considerations

Portland cement-amended soil is hard and has low permeability. This soil does not drain well and it is not suitable for planting. Future planted areas should not be cement amended, if practical, or accommodations should be made for drainage and planting. Moreover, cement amending soil within building areas must be done carefully to avoid trapping water under floor slabs. We should be contacted if this approach is considered. Cement amendment should not be used if runoff during construction cannot be directed away from adjacent wetlands (if any). Cement amendment runoff should be collected, monitored, and treated in accordance with DEQ requirements prior to being discharged.

6.4.4.5 Specification Recommendations

We recommend that the following comments be included in the specifications for the project:

- In general, cement amendment is not recommended during cold weather (temperatures less than 40 degrees Fahrenheit) or during rainfall.
- Mixing Equipment
 - Use a pulverizer/mixer capable of uniformly mixing the cement into the soil to the design depth. Blade mixing will not be allowed.
 - Pulverize the soil-cement mixture such that 100 percent by dry weight passes a 1-inch sieve and a minimum of 70 percent passes a No. 4 sieve, exclusive of gravel or stone retained on these sieves. If water is required, the pulverizer should be equipped to inject water to a tolerance of ¼ gallon per square foot of surface area.

- Use machinery that will not disturb the subgrade, such as using low-pressure "balloon" tires on the pulverizer/mixer vehicle. If subgrade is disturbed, the tilling/amendment depth shall extend the full depth of the disturbance.
- Multiple "passes" of the tiller may be required to adequately blend the cement and soil mixture.

Spreading Equipment

- Use a spreader capable of distributing the cement uniformly on the ground to within
 5 percent variance of the specified application rate.
- Use machinery that will not disturb the subgrade, such as using low-pressure "balloon" tires on the spreader vehicle. If subgrade is disturbed, the tilling/amendment depth shall extend the full depth of the disturbance.

Compaction Equipment

 Use a static, sheepsfoot or segmented pad roller with a minimum static weight of 40,000 pounds for initial compaction of fine-grained soil (silt and clay) or an alternate approved by the geotechnical engineer.

6.5 EROSION CONTROL

The site soil is moderately susceptible to erosion; therefore, erosion control measures should be carefully planned and in place before construction begins. Surface water runoff should be collected and directed away from slopes to prevent water from running down the slope face. Erosion control measures (such as straw bales, sediment fences, and temporary detention and settling basins) should be used in accordance with local and state ordinances.

7.0 OBSERVATION OF CONSTRUCTION

Satisfactory foundation and earthwork performance depends to a large degree on quality of construction. Sufficient observation of the contractor's activities is a key part of determining that the work is completed in accordance with the construction drawings and specifications. Subsurface conditions observed during construction should be compared with those encountered during the subsurface exploration. Recognition of changed conditions often requires experience; therefore, qualified personnel should visit the site with sufficient frequency to detect if subsurface conditions change significantly from those anticipated.

We recommend that NV5 be retained to observe earthwork activities, including stripping, proof rolling of the subgrade and repair of soft areas, footing subgrade preparation, final proof rolling of the pavement subgrade and base rock, and AC placement and compaction, and performing laboratory compaction and field moisture-density tests.

8.0 LIMITATIONS

We have prepared this report for use by Stanton Street Building Company, LLC and other members of the design and construction team for the proposed project. The data and report can be used for bidding or estimating purposes, but our report, conclusions, and interpretations should not be construed as warranty of the subsurface conditions and are not applicable to other sites.

REFERENCES

ASCE, 2016. Minimum Design Loads for Buildings and Other Structures. ASCE Standard ASCE/SEI 7-016. American Society of Civil Engineers.

Boulanger, R. W., and Idriss, I. M., 2014, "CPT and SPT based liquefaction triggering procedures." Report No. UCD/CGM-14/01, Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, University of California, Davis, CA, 134 pp.

Boulanger Idriss CPT and SPT Liq triggering CGM-14-01 2014.

Cetin, K. O., Bilge, H. T., Wu, J., Kammerer, A. M., and Seed, R. B., 2009. Probabilistic Model for the Assessment of Cyclically Induced Reconsolidation (Volumetric) Settlements. *Journal of Geotechnical and Geoenvironmental Engineering*, vol. 135, iss. 3.

Madin, Ian P., 1990. Earthquake-Hazard Geology Maps of the Portland Metropolitan Area, Oregon: Text and Map Explanation, Oregon Department of Geology and Mineral Industries, Open-File Report 0-90-2, 21p., 8 plates, scale 1:24,000.

Madin, Ian P., 2009. Portland, Oregon geology by tram, train, and foot, Oregon Geology, Volume 69, No. 1, 2009, pp 73-92.

Oregon Department of Transportation (ODOT), 2019. *ODOT Pavement Design Guide*, January 2019 Edition.

Oregon Department of Transportation, 2021. Oregon Standard Specifications for Construction.

Orr, E.L. and W.N. Orr, 1999. Geology of Oregon. Kendall/Hunt Publishing Company, Iowa: 254 p.

Exploration observations indicate soil conditions only at specific locations and only to the depths penetrated. They do not necessarily reflect soil strata or water level variations that may exist between exploration locations. If subsurface conditions differing from those described are noted during the course of excavation and construction, re-evaluation will be necessary.

The site development was conceptual at the time this report was prepared. When the design has been finalized and if there are changes in the site grades, design traffic, or type of construction, the conclusions and recommendations presented may not be applicable. If design changes are made, we request that we be retained to review our conclusions and recommendations and to provide a written modification or verification.

The scope of our services does not include services related to construction safety precautions, and our recommendations are not intended to direct the contractor's methods, techniques, sequences, or procedures, except as specifically described in this report for consideration in design.

Within the limitations of scope, schedule, and budget, our services have been executed in accordance with generally accepted practices in this area at the time this report was prepared. No warranty, express or implied, should be understood.

*** * ***

OREGO

12/31/24

EXPIRES:

We appreciate the opportunity to be of service to you. Please call if you have questions concerning this report or if we can provide additional services.

Sincerely,

NV5

Tyler A. Pierce, P.E. Senior Project Engineer

Shawn M. Dimke, P.E., G.E.

Principal Engineer

FIGURES

Printed By: mmiller | Print Date: 9/8/2022 2:48:04 PM File Name: J:\S-Z\StantonSt\StantonSt-14\StantonSt-14-01\Figures\CAD\StantonSt-14-01-VM01.dwg | Layout: FIGURE 1

NIV15

STANTONST-14-01

VICINITY MAP

SEPTEMBER 2022 PANZER NURSERY BEAVERTON, OR

FIGURE 1

APPENDIX A

APPENDIX A

FIELD EXPLORATIONS

GENERAL

We explored subsurface conditions at the site by drilling 14 borings (B-1 through B-14) to depths between 16.5 and 31.5 feet BGS and advancing 2 CPT probes (CPT-1 and CPT-2) to depths of approximately 55.5 and 56 feet BGS at the locations shown on Figure 2. The borings were drilled by Dan J. Fischer Excavating, Inc. of Forest Grove, Oregon, on August 1 and 2, 2022, using a trailer-mounted drill rig and solid-stem auger drilling methods. The borings were completed under the supervision of NV5 personnel. The exploration logs are presented in this appendix. A description of the CPTs and the CPT results are presented in Appendix B.

The locations of the explorations were determined in the field by pacing from existing site features. This information should be considered accurate to the degree implied by the method used.

SOIL SAMPLING

Samples were collected from the borings using a $1\frac{1}{2}$ -inch-inside diameter split-spoon (SPT) sampler in general accordance with ASTM D1586. The split-spoon samplers were driven into the soil with a 140-pound hammer free-falling 30 inches. The samplers were driven a total distance of 18 inches. The number of blows required to drive the sampler the final 12 inches is recorded on the boring logs, unless otherwise noted. Sampling methods and intervals are shown on the exploration logs.

The hammer used to conduct the SPTs was lifted using a rope and cathead system. The hammer was raised using two wraps of the rope around the cathead to conduct the SPTs.

SOIL CLASSIFICATION

The soil samples were classified in the field in accordance with the "Exploration Key" (Table A-1) and "Soil Classification System" (Table A-2), which are presented in this appendix. The exploration logs indicate the depths at which the soil characteristics change, although the change actually could be gradual. If the change occurred between sample locations, the depth was interpreted. Classifications are shown on the exploration logs.

INFILTRATION TESTING

Infiltration testing was conducted in borings B-5, B-6, and B-10 at depths between 3 and 5 feet BGS. The underlying soil was saturated by allowing the water to infiltrate into the subsurface. The infiltration rate was measured under low-head conditions after saturated conditions had been achieved. Infiltration testing was completed using the encased falling head test method. Infiltration testing was completed by pouring water into 6-inch PVC pipe embedded at least 12 inches and measuring the drop in water with respect to time. Testing was completed until consistent rates were achieved.

LABORATORY TESTING

CLASSIFICATION

The soil samples were classified in the laboratory to confirm field classifications. The laboratory classifications are shown on the exploration logs if those classifications differed from the field classifications.

MOISTURE CONTENT

We determined the natural moisture content of select soil samples in general accordance with ASTM D2216. The natural moisture content is a ratio of the weight of the water to the dry weight of soil in a test sample expressed as a percentage. The test results are presented in this appendix.

PARTICLE-SIZE ANALYSIS

Particle-size analysis was completed on select soil samples in general accordance with ASTM D1140 (percent passing the U.S. Standard No. 200 sieve). This test determines the fraction of the soil particles in a sample that are finer than 75 μ m expressed as percentage of its dry weight. The test results are presented in this appendix.

ATTERBERG LIMITS

The plastic limit and liquid limit (Atterberg limits) of select soil samples were determined in general accordance with ASTM D4318. The Atterberg limits and the plasticity index were completed to aid in the classification of the soil and evaluation of liquefaction susceptibility. The plastic limit is defined as the moisture content (in percent) where the soil becomes brittle. The liquid limit is defined as the moisture content where the soil begins to act similar to a liquid. The plasticity index is the difference between the liquid and plastic limits. The test results are presented in this appendix.

SYMBOL	SAMPLING DESCRIPTION								
		Location of sample collected in general accordance with ASTM D1586 using Standard Penetration Test (SPT) with recovery							
	Location of sample collected using thin-wall Shelby tube or Geoprobe® sampler in general accordance with ASTM D1587 with recovery								
		Location of sample collected using Dames & Moore sampler and 300-pound hammer or pushed with recovery							
	Location of sample collected using Dames & Moore sampler and 140-pound hammer or pushed with recovery								
M		sample collected using 3-inch-ounammer with recovery	ıtside diamet	ter California split-spoon	sampler and				
	Location of g	grab sample	Graphic Lo	og of Soil and Rock Types	otugon ocil or				
	Rock coring	interval		Observed contact be rock units (at depth					
\sqsubseteq	Water level of	during drilling		Inferred contact be rock units (at appro					
▼	Water level t	Water level taken on date shown indicated)							
		GEOTECHNICAL TESTIN	NG EXPLANA	TIONS					
ATT	Atterberg Lir	nits	Р	Pushed Sample					
CBR	California Be		PP	Pocket Penetrometer					
CON	Consolidatio		P200	Percent Passing U.S. St	tandard No. 200				
DD	Dry Density			Sieve					
DS	Direct Shear		RES	Resilient Modulus					
HYD	Hydrometer		SIEV	Sieve Gradation					
MC	Moisture Co		TOR	Torvane					
MD		nsity Relationship	UC	Unconfined Compressiv	ve Strength				
NP	Non-Plastic		VS	Vane Shear					
OC	Organic Con	tent	kPa	Kilopascal					
		ENVIRONMENTAL TEST	ING EXPLANA	ATIONS					
CA	Sample Sub	mitted for Chemical Analysis	ND	Not Detected					
P	Pushed Sam	•	NS	No Visible Sheen					
PID	Pusned Sample Photoionization Detector Headspace			Slight Sheen					
	Analysis		SS MS	Moderate Sheen					
ppm	Parts per Mi	llion	HS	Heavy Sheen					
NIVI5		EXPLOI	RATION KEY		TABLE A-1				

RELATIVE DENSITY - COARSE-GRAINED SOIL							
Relative Density Standard Penetration Test (SPT) Dames & Moore Sampler (140-pound hammer) Dames & Moore Sampler (300-pound hammer)							
Very loose	0 - 4	0 - 11	0 – 4				
Loose	4 - 10	11 - 26	4 - 10				
Medium dense	10 - 30	26 - 74	10 - 30				
Dense	30 - 50	74 - 120	30 - 47				
Very dense	More than 50	More than 120	More than 47				

CONSISTENCY - FINE-GRAINED SOIL

Consistency	Standard Penetration Test (SPT) Resistance	Dames & Moore Sampler (140-pound hammer)	Dames & Moore Sampler (300-pound hamm	Compressive Strength
Very soft	Less than 2	Less than 3	Less than 2	Less than 0.25
Soft	2 - 4	3 - 6	2 - 5	0.25 - 0.50
Medium stiff	4 - 8	6 - 12	5 - 9	0.50 - 1.0
Stiff	8 - 15	12 - 25	9 - 19	1.0 - 2.0
Very stiff	15 - 30	25 - 65	19 - 31	2.0 - 4.0
Hard	More than 30	More than 65	More than 31	More than 4.0
	PRIMARY SOIL DIV	/ISIONS	GROUP SYMBOL	GROUP NAME
	GRAVEL	CLEAN GRAVEL (< 5% fines)	GW or GP	GRAVEL
	(more than 50% of coarse fraction retained on No. 4 sieve)	GRAVEL WITH FINES	GW-GM or GP-GM	GRAVEL with silt
		(≥ 5% and ≤ 12% fines)	GW-GC or GP-GC	GRAVEL with clay
COARSE-		GRAVEL WITH FINES (> 12% fines)	GM	silty GRAVEL
GRAINED SOIL			GC	clayey GRAVEL
(more than		(> 1270 IIIIeS)	GC-GM	silty, clayey GRAVEL
50% retained on	SAND	CLEAN SAND (<5% fines)	SW or SP	SAND
No. 200 sieve)	(500)	SAND WITH FINES	SW-SM or SP-SM	SAND with silt
	(50% or more of coarse fraction	$(\geq 5\% \text{ and } \leq 12\% \text{ fines})$	SW-SC or SP-SC	SAND with clay
	passing	CAND WITH FINE	SM	silty SAND
	No. 4 sieve)	SAND WITH FINES (> 12% fines)	SC	clayey SAND
	,	(> 1270 IIIIeS)	SC-SM	silty, clayey SAND
			ML	SILT
FINE-GRAINED		Liquid limit less than 50	CL	CLAY
SOIL		Liquid IIIIII 1655 tridii 50	CL-ML	silty CLAY
(50% or more	SILT AND CLAY		OL	ORGANIC SILT or ORGANIC CLAY
(30% 01 111016	1		MH	SILT

MOISTURE CLASSIFICATION

HIGHLY ORGANIC SOIL

passing

No. 200 sieve)

ADDITIONAL CONSTITUENTS

MH

СН

ОН

PT

Term	Field Test	Secondary granular components or other materials such as organics, man-made debris, etc.						
			Silt and	Clay In:		Sand and	Gravel In:	
dry	very low moisture, dry to touch	Percent	Fine- Grained Soil	Coarse- Grained Soil	Percent	Fine- Grained Soil	Coarse- Grained Soil	
moist	damp, without	< 5	trace	trace	< 5	trace	trace	
moist	visible moisture	5 - 12	minor	with	5 - 15	minor	minor	
wet	visible free water, usually saturated	> 12	some	silty/clayey	15 - 30	with	with	
					> 30	sandy/gravelly	Indicate %	

Liquid limit 50 or greater

SOIL CLASSIFICATION SYSTEM

TABLE A-2

SILT

CLAY

ORGANIC SILT or ORGANIC CLAY

PEAT

	DEPTH FEET	GRAPHIC LOG	MATEI	RIAL DESCRIPTION	ELEVATION DEPTH	TESTING	SAMPLE	▲ BLOW COUNT ● MOISTURE CONTENT %		CALLATION AND COMMENTS
-			AGGREGATE BA	CRETE (3.0 inches). ASE (9.0 inches). Iray with brown mottled or sand; moist, sand is	0.3	ATT PP		6 . •	DCP tes PP = 0.5 LL = 47' PL = 25'	t at 1.3 feet. tsf % duilling drilling tsf
	5 		gray at 5.0 fee	t		PP		6.	PP = 0.5	tsf 5.
	- -		Soft, light brow moist to wet, s	n SILT (ML), minor sand; and is fine.	7.0	PP		3	PP = 0.2	'5 tsf
	10 — - -		brown with gra feet	y mottles; wet at 10.0		PP		3	PP = 0.2	'5 tsf
	15 — - -		stiff at 15.0 fee	et		P200 PP		10	P200 = PP = 0.7	
	20 — - -		very stiff at 20 Exploration cor	.0 feet mpleted at a depth of	21.5	PP		16 A:		elevation was not ed at the time of
9/8/22:KT	- 25 — -			using two wraps with a						
GDI_NV5.GDT PRINT DATE: 9	- 30 — -									
STANTONST-14-01-B1_14.GPJ GDI	- 35 — - -									
STANTONS	- -									
PER PAGE	40 —	DRILLED BY: Dan J. Fischer Excavating, Inc.					Y: L. (00 COMPLETE	:D: 08/01/01
- NV5 - 1		BORING METHOD: solid-stem auger (see document te						BORING BIT DIAMETER: 3 inc	hes	
BORING LOG			V 5	STANTONST-14-01				BORING B-1		
BOR		NIVI5		SEPTEMBER 2022				PANZER NURSERY BEAVERTON, OR		FIGURE A-1

	DEPTH FEET	GRAPHIC LOG	MATEI	RIAL DESCRIPTION	ELEVATION DEPTH	TESTING	SAMPLE	RQD% [CONTENT % CORE REC%		TALLATION AND COMMENTS	
	- - -		Stiff, dark gray trace organics fine - FILL .	K (15.0 inches) - FILL. CLAY (CL), minor sand, (rootlets); moist, sand is	1.3	P200 PP		10		P200 = PP = 1.5	93% tsf	ing
	5 — - -		mottled SILT w	ith sand (ML); moist, sand		PP		√ •		PP = 1.0	tsf	during drilli
	-		stiff at 7.5 feet			PP		Å •		PP = 1.2	5 tsf	9.5 feet, during drilling
	10 —		trace gravel at	10.0 feet				9				
	15 — -		very stiff at 15		16.5			17 A :				
	-			mpleted at a depth of	16.5						elevation was not ed at the time of tion.	
	20 —		cathead.	using two wraps with a								
	- -											
	- 25 —											
9/8/22:KT	-											
PRINT DATE: 9	-											
	30 — -											
GDI_NV5.GDT	-											
	- 35 —											
T-14-01-B	-											
STANTONST-14-01-B1_14.GPJ	=											
PER PAGE	40 —	DRI	LLED BY: Dan J. Fischer E	excavating, Inc.	LOG	GED B				OOMPLETE	:D: 08/01/01	
- NV5 - 1 I		BORING METHOD: solid-stem auger (see document to						BORING	BIT DIAMETER: 6 inch	nes		
BORING LOG -			V 5	STANTONST-14-01				ВС	ORING B-2			
BORII		NIVI5		SEPTEMBER 2022				PANZER NURS BEAVERTON			FIGURE A-2	

DEF FE	PTH ET	GRAPHIC LOG	MATE	RIAL DESCRIPTION	ELEVATION DEPTH	TESTING	SAMPLE	▲ BLOW COUN ● MOISTURE (□□□□□ RQD% □□□□ S0	CONTENT % CORE REC%		CALLATION AND COMMENTS
	-0	0.8.3	Medium stiff to	K (6.0 inches) - FILL . o stiff, brown CLAY (CL), oist, sand is fine.	0.5	PP		8			t at 0.5 foot. Itsf Itsf
	5 —					PP		5		PP = 0.5	tsf
	-		Soft, brown SIL to wet, sand is	T with sand (ML); moist fine.	7.0	PP		3		PP = 0.2	!5 tsf
	10 — - -		medium stiff at	: 10.0 feet		PP		6		PP = 0.7	'5 tsf
	- 15 — - - -			npleted at a depth of using two wraps with a	16.5			3			elevation was not ed at the time of tion.
	20 — - - - - 25 —		cutileud.								
RINT DATE: 9/	30 —										
4.GPJ	- 35 — - -										
GE STANTON	40 —							0 50	10	00	
- 1 PER PAGE	DRILLED BY: Dan J. Fischer Excavating, Inc.					GED B					ED: 08/01/01
NV5		MI		THOD: solid-stem auger (see document text)				T DIAMETER: 3 inch	nes	
BORING LOG	NIVI5		V 5	SEPTEMBER 2022				PANZER NURSE BEAVERTON, (FIGURE A-3

	DEPTH FEET	GRAPHIC LOG	МАТЕ	RIAL DESCRIPTION	ELEVATION DEPTH	TESTING	SAMPLE	l	CONTENT % CORE REC%	INST	CALLATION AND COMMENTS
			CRUSHED ROC Stiff, gray SILT sand is fine.	K (4.0 inches) - FILL . /(ML), minor sand; moist,	0.3	PP		9			t at 0.5 foot.
	5 —					ATT		.11 A •		LL = 40 PL = 26	
	-		medium stiff, li	ght brown at 7.5 feet				6.			∑ 8.5 1
	10 —		medium stiff to	stiff at 10.0 feet				<u>8</u>			
	- 15 — -		stiff, sandy; we	t at 15.0 feet npleted at a depth of	16.5			13			elevation was not ed at the time of
	- 20 — -			using two wraps with a						explora	
/8/22:KT	- 25 — -										
/5.GDT PRINT DATE: 9/	30 —										
STANTONST-14-01-81_14.GPJ GDI_NV5.GDT	- 35 — -										
STANTONST-	-										
PER PAGE	40 —	DRILLED BY: Dan J. Fischer Excavating, Inc.			LOG	GED B				COMPLETE	ED: 08/01/01
- NV5 - 1		BORING METHOD: solid-stem auger (see document tex						BORING E	BIT DIAMETER: 3 inch	nes	
BORING LOG		NIVI5		STANTONST-14-01					ORING B-4		
BOR		SEPTEMBER 2022				PANZER NURSERY BEAVERTON, OR FIGURE A-4					

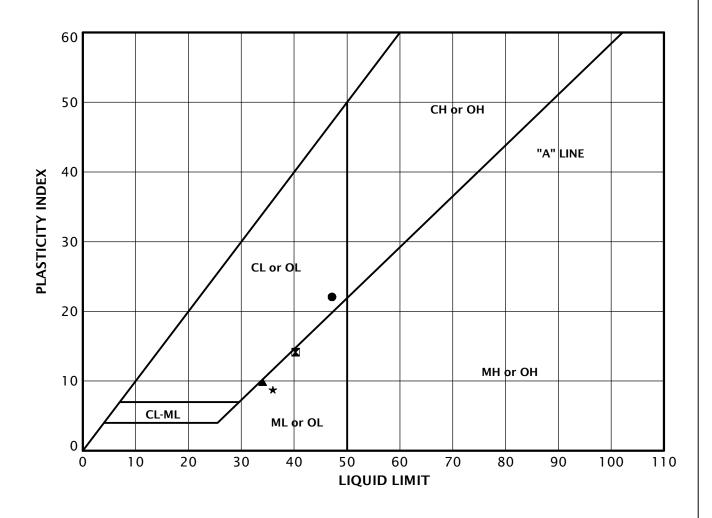
	DEPTH FEET	GRAPHIC LOG	MATE	RIAL DESCRIPTION	ELEVATION DEPTH	TESTING	SAMPLE	RQD%	CONTENT % CORE REC%		CALLATION AND)
			(ML), trace grace cobbles are ap is asphalt conc	T with sand and cobbles vel and debris; moist, proximately 10%, debris rete cuttings - FILL . T (ML), minor sand, trace	4.0	P200		14		Infiltrat P200 =	ion test at 4.0 feet. 89%	
	10 —		without gravel	at 10.0 feet				9				네 12.5 feet, during drilling
	- 15 — - -		Exploration cor 16.5 feet.	with sand; wet at 15.0 feet mpleted at a depth of using two wraps with a	16.5			4			elevation was not ed at the time of tion.	
	20 —		cathead.	using two wraps with a								
PRINT DATE: 9/8/22:KT	25 — - - -											
GDI_NV5.GDT	30 —											
: STANTONST-14-01-B1_14.GPJ	35 — 40 —											
1 PER PAGE	-70 — - -	DRI	LLED BY: Dan J. Fischer E	excavating, Inc.	LOG	GED B				COMPLETE	:D: 08/01/01	
- NV5	BORING METHOD: solid-stem auger (see document t				t)				BIT DIAMETER: 3 inch	nes		
BORING LOG	STANTONST-14-01 SEPTEMBER 2022					PANZER NURSERY BEAVERTON, OR FIGURE A-5						5

	DEPTH FEET	GRAPHIC LOG	МАТЕ	RIAL DESCRIPTION	ELEVATION DEPTH	TESTING	SAMPLE	▲ BLOW COUNT ● MOISTURE CONTENT %		FALLATION AND COMMENTS
	5 —		Medium stiff, d minor sand, tra (rootlets); mois fine and angula	ark gray SILT (ML), ice gravel and organics it, sand is fine, gravel is ir - FILL .		P200		7.	Infiltrat P200 =	ion test at 5.0 feet. 92%
	10 —		Stiff, brown SIL clay, trace orga sand is fine. medium stiff at	T with sand (ML), some anics (rootlets); moist,	7.5			7. •		
	15 —		Exploration cor 16.5 feet.	npleted at a depth of using two wraps with a	16.5			4		elevation was not ed at the time of tion.
	20 — 25 —		cathead.							
PRINT DATE: 9/8/22:KT	30 —									
STANTONST-14-01-81_14.GPJ GDI_NV5.GDT	- - - 35 — -									
	40 —							0 50	100	
- 1 PER PAGE		DRILLED BY: Dan J. Fischer Excavating, Inc.					Y: L. G	Gose	COMPLETE	ED: 08/01/01
LOG - NV5		MI		FHOD: solid-stem auger (see document tex	t)			BORING BIT DIAMETER: 3 inc	ches and 6 ir	nches
BORING LOG		N	V 5	SEPTEMBER 2022				PANZER NURSERY BEAVERTON, OR		FIGURE A-6

	DEPTH FEET	GRAPHIC LOG	MATER	RIAL DESCRIPTION	ELEVATION DEPTH	TESTING	SAMPLE		CONTENT % CORE REC%		ALLATION AND)
	0		Medium stiff, g sand; moist, sa	ray CLAY (CL), minor nd is fine - FILL .		PP		6		PP = 0.7	5 tsf	
	5 — - -		soft at 5.0 feet			PP		3		PP = 0.7	5 tsf	
	-		medium stiff, w gravel is fine ar	vith sand, trace gravel; nd subangular at 7.5 feet				6 •				
	10 —		trace organics feet	(woody debris) at 10.0		PP		4 •		PP = 0.5	tsf	
	-		Stiff, dark gray moist, sand is f	SILT (ML), trace sand; fine.	12.5							
	15 — -							13				ing
	-											22.0 feet, during drilling
	20 —		soft, light brow 20.0 feet	n, minor sand; wet at		PP		3		PP = 0.2	5 tsf	内 22.0 feet
	-											
/8/22:KT	25 — -		medium stiff at	: 25.0 feet		P200		6.		P200 =	95%	
PRINT DATE: 9/	-											
	30 —		Exploration cor	npleted at a depth of	31.5			\$			elevation was not	
.GPJ GDI_NV5.GDT	-		31.5 feet.	using two wraps with a						measur explora	ed at the time of ion.	
4-01-81_14	35 — -		catheau.									
STANTONST-14-01-B1_14.GPJ	-											
PER PAGE S	40 —	DRI	LLED BY: Dan J. Fischer E	excavating, Inc.	LOG	GED B				OO COMPLETE	D: 08/01/22	
		BORING METHOD: solid-stem auger (see document tex							BIT DIAMETER: 3 inch		· · · · · · · · · · · · · · · · · · ·	
BORING LOG - NV5		STANTONST-		STANTONST-14-01				ВО	RING B-7			
BORIN		STANTONST-14-01 SEPTEMBER 2022						PANZER NURS BEAVERTON,			FIGURE A-7	,

	DEPTH FEET	GRAPHIC LOG	MATE	RIAL DESCRIPTION	ELEVATION DEPTH	TESTING	SAMPLE	▲ BLOW COUI ● MOISTURE □□□□ RQD% □ 0	CONTENT % CORE REC%		CALLATION AND COMMENTS	
			Stiff, dark gray	K (3.0 inches) - FILL . -orange SILT (ML), minor y; moist, sand is fine.	0.3			:11			t at 0.5 foot.	g drilling
	5 — - -		medium stiff, d 5.0 feet	ark gray, trace sand at				6				冈 7.5 feet, during drilling
	-		soft to medium feet	n stiff; moist to wet at 7.5				4 •				፟፟ጟ
	10 — - -		soft, trace grav	vel; wet at 10.0 feet		P200		3		P200 =	96%	
	-											
	15 —		medium stiff at					7				
	-		Exploration cor 16.5 feet.	npleted at a depth of	16.5						elevation was not ed at the time of tion.	
	20 —		SPT completed cathead.	using two wraps with a								
	-											
	-											
Ή	25 —											
E: 9/8/22:KT	-											
PRINT DATE:	-											
	30 — -											
GDI_NV5.GDT	-											
	- 35 —											
14-01-81	-											
STANTONST-14-01-B1_14.GPJ	-											
PAGE STA	40							0 50	0 10	00		\dashv
- 1 PER		DRI	LLED BY: Dan J. Fischer E			GED B	Y: L. G				ED: 08/02/22	_
-0G - NV5		MI		THOD: solid-stem auger (see document text STANTONST-14-01)				RING B-8	ies		\dashv
BORING LOG			V 5	SEPTEMBER 2022				PANZER NURS BEAVERTON,			FIGURE A-8	

	DEPTH FEET	GRAPHIC LOG	МАТЕ	RIAL DESCRIPTION	ELEVATION DEPTH	TESTING	SAMPLE	•	∏ RQD% [⁄	CONTENT % CORE REC%		TALLATION AND COMMENTS
8/22:KT	FEET	GRAPHIC	CRUSHED ROC Stiff, brown SIL moist, sand is formal stiff; in wet at 7.5 feet soft to medium medium stiff at Exploration con 16.5 feet.	K (4.0 inches) - FILL. T (ML), minor sand; fine. noist to wet at 5.0 feet	0.3 Tech	P200			∏ RQD% [⁄	CORE REC%	00 P200 = Surface	elevation was not ed at the time of
GDI_NV5.GDT PRINT DATE: 9/	- 30 — - - - 35 —											
PER PAGE STANTONST-14-01-B1_14.GPJ	40	DRI	ILLED BY: Dan J. Fischer E	xcavating, Inc.	LOG	GED B		ose	5	50	00 COMPLETE	ED: 08/02/22
- NV5 - 1 F				THOD: solid-stem auger (see document text					BORING	BIT DIAMETER: 3 inc		
2 LOG - h			VIC	STANTONST-14-01					ВС	ORING B-9		
BORING LOG		STANTONST-14-01 SEPTEMBER 2022			PANZER NURSERY BEAVERTON, OR FIGURE A-9							


DEPTH FEET	GRAPHIC LOG	MATEI	RIAL DESCRIPTION	ELEVATION DEPTH	TESTING	SAMPLE	RQD%	CONTENT % CORE REC%		CALLATION AND)
5 -		Medium stiff to minor clay, trad moist, debris is clay tiles - FILL Medium stiff, o	K (6.0 inches) - FILL. o stiff, brown SILT (ML), ce gravel and debris; s asphalt concrete and lray CLAY (CL), minor el; moist, sand is fine.	0.5	P200		5 •		Soil fror classifie P200 =	n 0.5 to 2.5 feet d based on cuttings. 86% on test at 3.0 feet.	囚 7.5 feet, during drilling
10 -	- - - -	clay; moist, sar	T (ML), minor sand, trace and is fine.	7.0			10				i 7.5 Å
	- - -	mediam stiff, c	iaik gray at 10.0 feet		ATT		Á		LL = 349 PL = 249		
15 -		16.5 feet.	mpleted at a depth of using two wraps with a	16.5			\$			elevation was not ed at the time of tion.	
20 -	 - - -	cathead.									
TE: 9/8/22:KT	- - -										
75.GDT PRINT DATE:											
-01-81_14.GPJ GDLNV5.GDT 2	-										
PAGE STANTONST-14-01-B1_14.GP	- - -						0	50 10	00		
- 1 PER	DRILLED BY: Dan J. Fischer Excavating, Inc.					Y: L. G				D: 08/02/22	
- NV5	MI		THOD: solid-stem auger (see document text					RING B-10	nes		
BORING LOG	\mathbb{N}	V 5	SEPTEMBER 2022				PANZER NUR BEAVERTON			FIGURE A-10	0

	DEPTH FEET	GRAPHIC LOG	MATE	RIAL DESCRIPTION	ELEVATION DEPTH	TESTING	SAMPLE	RQD% [E CONTENT % CORE REC%		CALLATION AND COMMENTS
-				on SILT with sand (ML); fine - FILL .	- 4.5			3			би
	5 — - - -		mottled SILT (N sand; moist.	o stiff, brown with gray ML), some clay, minor vithout clay at 7.5 feet				8 6			⊠ 9.5 feet, during drilling
	- 10 — - -		moist to wet at	t 10.0 feet		P200		5		P200 = 9	_
	- - 15 —			vet at 15.0 feet	16.5	ATT		5		LL = 369 PL = 279 Surface	% % elevation was not
	20 —			mpleted at a depth of using two wraps with a						measuro explora	ed at the time of tion.
_	- - - 25 —										
PRINT DATE: 9/8/22:KT	- - -										
GDI_NV5.GDT PR	30 — - - -										
STANTONST-14-01-B1_14.GPJ	- 35 — - -										
	40										
1 PER PAGE		DRI	ILLED BY: Dan J. Fischer E	excavating, Inc.	LOG	GED B				COMPLETE	ED: 08/02/22
- NV5 -		N. E. I		THOD: solid-stem auger (see document te	xt)				BIT DIAMETER: 3 inch	nes	
BORING LOG		NIVI5		STANTONST-14-01 SEPTEMBER 2022				PANZER NUR BEAVERTON	SERY		FIGURE A-11

	DEPTH FEET	GRAPHIC LOG	MATEI	RIAL DESCRIPTION	ELEVATION DEPTH	TESTING	SAMPLE	▲ BLOW COUNT ● MOISTURE CONTENT %		TALLATION AND COMMENTS
	0 _ _ _		Medium stiff, d	K (12.0 inches) - FILL. lark gray with brown (CL), minor sand and 'ganics (rootlets); moist, avel is fine.	1.0	PP		6	DCP te	st at 0.5 foot. .75 tsf
	5 — - -		Modium stiff h	arown gray with dark	7.0	PP		6	PP = 0	.75 tsf □ .75 tsf
	-		brown mottled moist to wet, s	orown-gray with dark SILT (ML), minor sand; and is fine.	7.5	PP		6 •	PP = 0.	.75 tsf ∑
	10 — - -		wet at 10.0 fee	et		PP		6	PP = 0.	.75 tsf
	- - 15 —									
	_		Exploration could feet.	mpleted at a depth of	16.5	PP		,12		e elevation was not red at the time of
	20 —			using two wraps with a					Exploi	
	-									
KT	- 25 —									
ATE: 9/8/22:KT	-									
T PRINT DATE:	30 — -									
GDI_NV5.GDT	-									
STANTONST-14-01-B1_14.GPJ	- 35 — -									
NTONST-14-0	-									
PAGE STA	40 —							0 50	100	
- 1 PER		DRI	LLED BY: Dan J. Fischer E			GED B	Y: L. G			TED: 08/02/22
LOG - NV5		MI		THOD: solid-stem auger (see document tex	u)			BORING B-1		
BORING LOG		NIVI5		SEPTEMBER 2022				PANZER NURSERY BEAVERTON, OR		FIGURE A-12

	DEPTH FEET	GRAPHIC LOG	MATER	RIAL DESCRIPTION	ELEVATION DEPTH	TESTING	SAMPLE		JRE CONTENT % CORE REC%		CALLATION AND COMMENTS
	5 —		AGGREGATE BA Medium stiff, li mottled SILT (N sand is fine. some clay at 5.	CRETE (7.0 inches). ASE (13.0 inches). ght brown with gray ML), trace sand; moist, 0 feet	0.6			5			i∕d 6.5 feet, during drilling
	- 10 — - - -			vithout clay; wet at 10.0		P200		5 •		P200 =	96%
	15 — - - - 20 —			npleted at a depth of using two wraps with a	16.5			13			elevation was not ed at the time of tion.
9/8/22:KT	- - - 25 — -										
GDI_NV5.GDT PRINT DATE:	- 30 — - -										
STANTONST-14-01-B1_14.GPJ	- 35 — - - -										
PER PAGE ST	40	DRII	LLED BY: Dan J. Fischer E	xcavating, Inc.	LOG	GED B		O Gose	50 1	00 COMPLETE	:D: 08/02/22
- NV5 - 1 P	BORING METHOD: solid-stem auger (see document text)								NG BIT DIAMETER: 4 inc		
BORING LOG - 1		NIVE STANTONST-14-01					В	ORING B-13			
BORIN	STANTONST-14-01 SEPTEMBER 2022							FIGURE A-13			

	DEPTH FEET	GRAPHIC LOG	MATE	RIAL DESCRIPTION	ELEVATION DEPTH	TESTING	SAMPLE	▲ BLOW C MOISTU RQD%	RE CONTENT % CORE REC%		ALLATION AND COMMENTS
E STANTONST-14-01-81_14.GPJ GDLNV5.GDT PRINT DATE: 9/8/22:KT	0		AGGREGATE BAMedium stiff, librown mottled minor sand; mottled minor sand; mottrace clay at 5. soft; moist to visoft to medium medium stiff, significant con 16.5 feet.		0.2			6: A:		Surface measur explora	elevation was not ed at the time of tion.
1 PER PAGE		DRILLED BY: Dan J. Fischer Excavating, Inc.						O Gose		COMPLETE	ED: 08/02/22
- NV5 - 1		BORING METHOD: solid-stem auger (see document te							G BIT DIAMETER: 3 inch	nes	
BORING LOG			V 5	STANTONST-14-01				PANZER NU	ORING B-14 IRSERY		FIGURE 4.1.
8	SEPTEMBER 2022								FIGURE A-14		

KEY	EXPLORATION NUMBER	SAMPLE DEPTH (FEET)	MOISTURE CONTENT (PERCENT)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX
•	B-1	2.5	38	47	25	22
×	B-4	5.0	35	40	26	14
•	B-10	10.0	35	34	24	10
*	B-11	15.0	39	36	27	9
						_

VI	M	
N	V	ח
A		U

STANTONST-14-01	ATTERBERG LIMITS TEST RESULTS				
SEPTEMBER 2022	PANZER NURSERY	FIGURE A-15			

EXPLORATION NUMBER B-1	SAMPLE DEPTH		MOISTURE							
B-1	(FEET)	ELEVATION (FEET)	CONTENT (PERCENT)	DRY DENSITY (PCF)	GRAVEL (PERCENT)	SAND (PERCENT)	P200 (PERCENT)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICIT INDEX
	2.5		38					47	25	22
B-1	5.0		45							
B-1	10.0		40							
B-1	15.0		35				95			
B-2	2.0		32				93			
B-2	5.0		34							
B-2	7.5		31							
B-3	2.5		38							
B-3	7.5		39							
B-4	2.5		34							
B-4	5.0		35					40	26	14
B-4	7.5		35							
B-5	2.5		26							
B-5	4.0		29				89			
B-6	2.5		26							
B-6	5.0		26				92			
B-6	10.0		35							
B-7	2.5		27							
B-7	7.5		34							
B-7	10.0		37							
B-7	25.0		32				95			
B-8	2.5		34							
B-8	7.5		38							
B-8	10.0		39				96			
B-9	5.0		38							
B-9	15.0		31				91			
B-10	2.5		27				86			
8.01	WE		CTANITONICT	14.01		CIIRARAAT	OV OE LAP		V DATA	
N	V 5		STANTONST-14-01 SEPTEMBER 2022				R NURSERY	ORATORY DATA FIGURE A-16		

t.	
PRINT DATE: 8/31/22:KT	
GDI_NV5.GDT	
(Y - GDI-NV5 STANTONST-14-01-B1_14.GPJ GDI_NV5.GDT	
GDI-NV5 ST	
LAB SUMMARY -	

SAMI	PLE INFORM	MATION	MOISTURE	DRY		SIEVE		ATTERBERG LIMITS			
EXPLORATION NUMBER	SAMPLE DEPTH (FEET)	ELEVATION (FEET)	CONTENT (PERCENT)	DENSITY (PCF)	GRAVEL (PERCENT)	SAND (PERCENT)	P200 (PERCENT)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	
B-10	5.0		36								
B-10	10.0		35					34	24	10	
B-11	5.0		35								
B-11	10.0		35				90				
B-11	15.0		39					36	27	9	
B-12	2.5		31								
B-12	7.5		38								
B-13	2.5		38								
B-13	7.5		40								
B-13	10.0		30				96				
B-14	2.5		39								
B-14	7.5		39								

NIVI5	STANTONST-14-01	SUMMARY OF LABORATORY D (continued))ATA
NIVIJ	SEPTEMBER 2022	PANZER NURSERY BEAVERTON, OR	FIGURE A-16

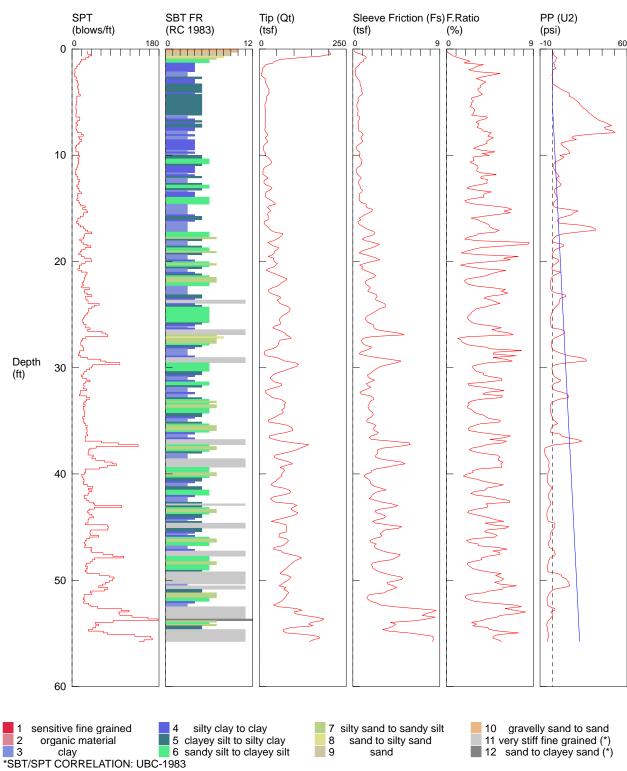
APPENDIX B

APPENDIX B

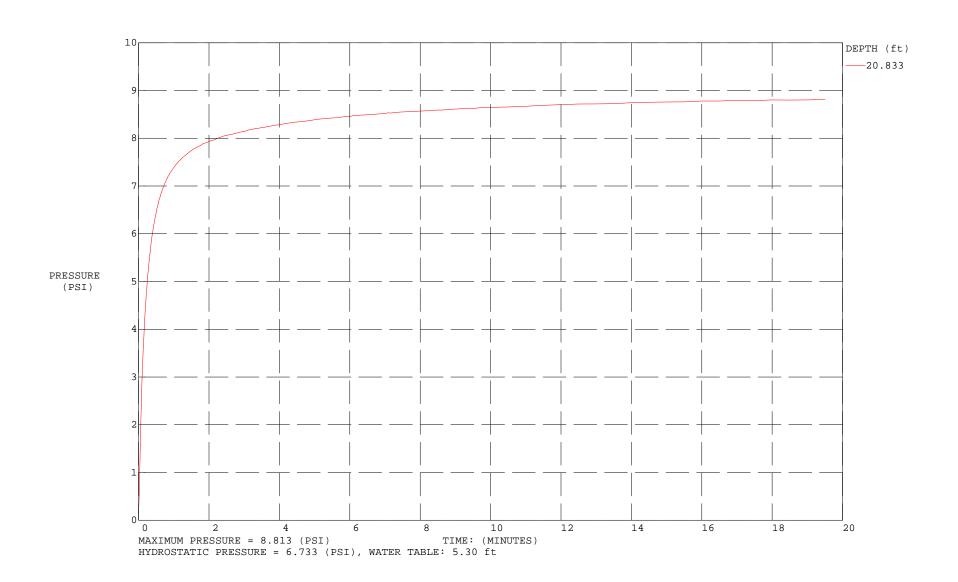
CONE PENETROMETER TESTING

Our subsurface exploration program included two CPT probes (CPT-1 and CPT-2) to depths of approximately 55.5 and 56 feet BGS. Figure 2 shows the locations of the CPTs relative to proposed site features. The CPTs were performed in general accordance with ASTM D5778 by Oregon Explorations, Inc. on August 2, 2022. The results of the CPTs are presented in this appendix.

The CPT is an in-situ test that characterizes subsurface stratigraphy. The testing includes advancing a 35.6-millimeter-diameter cone and friction sleeve through the soil profile. The cone is advanced at a rate of approximately 2 centimeters per second. Tip resistance, sleeve friction, and pore pressure are typically recorded at 0.1-meter intervals. At selected depths, the cone advancement was suspended and pore-water dissipation rates measured. Shear wave velocities were also measured at approximately 3-meter intervals in CPT-2.



NV5 / CPT-1 / Panzer Nursery / Beaverton


OPERATOR: OGE BAK CONE ID: DDG1532 HOLE NUMBER: CPT-1

TEST DATE: 8/2/2022 9:13:35 AM

TOTAL DEPTH: 55.774 ft

TEST DATE: 8/2/2022 9:13:35 AM

NV5 / CPT-1 / Panzer Nursery / Beaverton

OPERATOR: OGE BAK CONE ID: DDG1532 HOLE NUMBER: CPT-1

TEST DATE: 8/2/2022 9:13:35 AM

TOTAL DEPTH: 55.774 ft

Depth	Tip (Qt) Slee	ve Friction (Fs)	F.Ratio	PP (U2)	SPT		Soil Behavior Type
ft	(tsf)	(tsf)	(%)	(psi)	(blows/ft)	Zone	<u>UBC-</u> 1983
0.164	198.00	0.1328	0.067	0.117	32	10	gravelly sand to sand
0.328	202.64	0.2875	0.142	0.446	32	10	gravelly sand to sand
0.492	206.17	0.8865	0.430	0.718	39	9	sand
0.656	179.61	1.2550	0.699	1.711	34	9	sand
0.820	115.01	1.4048	1.221	3.634	28	8	sand to silty sand
0.984	60.29	1.1066	1.835	2.835	19	7	silty sand to sandy silt
1.148	45.02	1.0970	2.437	2.432	17	6	sandy silt to clayey silt
1.312	40.29	0.7408	1.839	0.670	15	6	sandy silt to clayey silt
1.476	18.24	0.6972	3.823	1.821	12	4	silty clay to clay
1.640	14.85	0.4640	3.125	1.631	9	4	silty clay to clay
1.804	9.85	0.2736	2.778	2.654	6	4	silty clay to clay
1.969	9.56	0.2219	2.321	0.203	6	4	silty clay to clay
2.133	9.04	0.2851	3.155	-0.190	6	4	silty clay to clay
2.297	5.63	0.3110	5.520	0.219	5	3	clay
2.461	5.34	0.2500	4.684	-0.515	5	3	clay
2.625	9.90	0.3644	3.680	-0.043	9	3	clay
2.789	16.64	0.5137	3.088	0.099	8	5	clayey silt to silty clay
2.953	17.65	0.6455	3.658	-0.117	11	4	silty clay to clay
3.117	18.10	0.7389	4.082	0.344	12	4	silty clay to clay
3.281	19.90	0.7476	3.756	0.248	13	4	silty clay to clay
3.445	22.61	0.7893	3.492	2.341	11	5	clayey silt to silty clay
3.609	24.53	0.8669	3.534	4.718	12	5	clayey silt to silty clay
3.773	28.12	0.9069	3.225	6.648	13	5	clayey silt to silty clay
3.937	27.21	0.8996	3.306	9.403	13	5	clayey silt to silty clay
4.101	28.57	1.0045	3.516	12.762	14	5	clayey silt to silty clay
4.265	25.98	0.9643	3.712	13.918	17	4	silty clay to clay
4.429	21.05	0.6967	3.309	13.374	10	5	clayey silt to silty clay
4.593	20.68	0.5379	2.601	16.577	10	5	clayey silt to silty clay
4.757	21.71	0.5674	2.614	18.014	10	5	clayey silt to silty clay
4.921	19.52	0.5491	2.812	19.909	9	5	clayey silt to silty clay
5.085	17.78	0.4519	2.542	21.626	9	5	clayey silt to silty clay
5.249	16.17	0.4225	2.612	22.195	8	5	clayey silt to silty clay
5.413	16.49	0.4058	2.461	23.770	8	5	clayey silt to silty clay
5.577	16.86	0.4665	2.768	25.060	8	5	clayey silt to silty clay
5.741	18.11	0.5333	2.945	27.313	9	5	clayey silt to silty clay
5.906	18.53	0.5287	2.853	28.490	9	5	clayey silt to silty clay
6.070	17.20	0.4796	2.789	29.839	8	5	clayey silt to silty clay
6.234	17.16	0.4444	2.590	31.935	8	5	clayey silt to silty clay
6.398	17.12	0.7261	4.241	33.603	16	3	clay
6.562	17.15	0.7056	4.113	35.643	16	3	clay
6.726	17.60	0.5975	3.395	37.629	11	4	silty clay to clay
6.890	16.82	0.5159	3.067	42.037	8	5	clayey silt to silty clay
7.054	16.59	0.5592	3.370	44.809	11	4	silty clay to clay

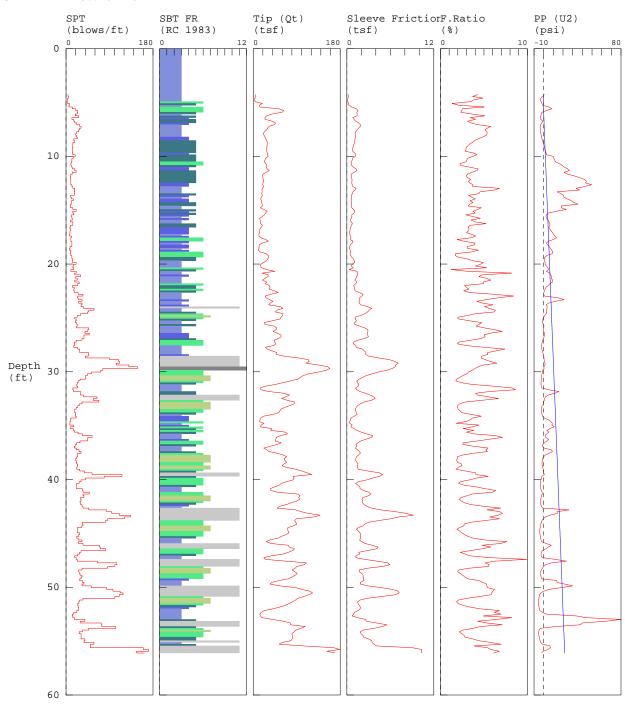
Depth		Sleeve Friction (Fs)	F.Ratio	PP (U2)	SPT		Soil Behavior Type
ft	(tsf)	(tsf)	(%)	(psi)	(blows/ft)	Zone	UBC-1983
7.382	17.66	0.5591	3.167	41.816	8	5	clayey silt to silty clay
7.546	15.74	0.5807	3.688	42.868	10	4	silty clay to clay
7.710	16.99	0.6380	3.755	48.888	11	4	silty clay to clay
7.874	20.03	0.9269	4.627	50.277	19	3	clay
8.038	24.15	1.0738	4.447	28.966	23	3	clay
8.202	22.19	0.9532	4.296	16.799	14	4	silty clay to clay
8.366	17.10	0.8345	4.879	15.400	16	3	clay
8.530	20.85	0.9251	4.437	19.156	20	3	clay
8.694	25.09	1.0381	4.137	11.109	16	4	silty clay to clay
8.858	19.71	0.8311	4.216	6.835	13	4	silty clay to clay
9.022	14.76	0.5601	3.795	7.190	9	4	silty clay to clay
9.022	11.55	0.3669	3.177	8.963	9 7	4	
					•	_	silty clay to clay
9.350	11.86	0.3335	2.813	11.384	8	4	silty clay to clay
9.514	12.98	0.4547	3.503	12.650	8	4	silty clay to clay
9.678	14.14	0.7100	5.021	13.560	14	3	clay
9.843	19.60	0.7312	3.731	13.827	13	4	silty clay to clay
10.007	15.38	0.6817	4.433	5.930	15	3	clay
10.171	24.78	0.6788	2.739	9.286	12	5	clayey silt to silty clay
10.335	29.42	0.8202	2.788	7.454	14	5	clayey silt to silty clay
10.499	33.39	0.9558	2.863	4.686	13	6	sandy silt to clayey silt
10.663	35.41	0.8686	2.453	2.293	14	6	sandy silt to clayey silt
10.827	32.60	0.9263	2.842	1.244	12	6	sandy silt to clayey silt
10.991	22.56	0.7257	3.216	0.467	11	5	clayey silt to silty clay
11.155	15.10	0.4953	3.279	0.651	10	4	silty clay to clay
11.319	11.76	0.3710	3.154	1.466	8	4	silty clay to clay
11.483	10.64	0.3339	3.138	2.256	7	4	silty clay to clay
11.647	10.91	0.3842	3.523	3.177	7	4	silty clay to clay
11.811	10.09	0.5198	5.151	4.283	10	3	clay
11.975	19.06	0.6986	3.665	5.537	12	4	silty clay to clay
					12	5	
12.139	25.23	0.8855	3.510	3.375			clayey silt to silty clay
12.303	16.55	0.7072	4.273	3.498	16	3	clay
12.467	13.45	0.5606	4.167	4.995	13	3	clay
12.631	13.57	0.5713	4.211	6.133	13	3	clay
12.795	20.08	0.6623	3.298	6.968	10	5	clayey silt to silty clay
12.959	32.48	0.7648	2.354	5.206	12	6	sandy silt to clayey silt
13.123	36.76	0.7835	2.131	2.109	14	6	sandy silt to clayey silt
13.287	30.39	0.9907	3.260	1.546	15	5	clayey silt to silty clay
13.451	20.29	0.9364	4.615	1.386	19	3	clay
13.615	17.26	0.6798	3.938	2.368	11	4	silty clay to clay
13.780	18.05	0.6870	3.806	3.172	12	4	silty clay to clay
13.944	18.71	0.7270	3.885	3.591	12	4	silty clay to clay
14.108	26.69	0.6777	2.539	3.869	10	6	sandy silt to clayey silt
14.272	35.71	0.6773	1.897	2.408	14	6	sandy silt to clayey silt
14.436	42.49	0.8792	2.069	1.191	16	6	sandy silt to clayey silt
14.600	46.68	1.3937	2.985	0.764	18	6	sandy silt to clayey silt
14.764	28.58	1.3459	4.710	0.649	27	3	clay
					22	3	-
14.928	23.32	1.4526	6.228	2.320			clay
15.092	30.10	2.0286	6.739	12.586	29	3	clay
15.256	33.32	1.9861	5.961	20.649	32	3	clay
15.420	25.56	1.6883	6.605	16.799	24	3	clay
15.584	23.75	1.2259	5.162	15.651	23	3	clay
1 5 7 4 0	26.06	0.9953	3.819	10.941	17	4	silty clay to clay
15.748 15.912	25.78	0.6566	2.547	5.930	12	5	clayey silt to silty clay

Depth	~ .	Sleeve Friction (Fs)	F.Ratio	PP (U2)	SPT		Soil Behavior Type
ft	(tsf)	(tsf)	(%)	(psi)	(blows/ft)	Zone	<u>UBC-</u> 1983
16.076	25.22		3.269	4.130	12	5	clayey silt to silty clay
16.240	14.65		3.564	4.077	9	4	silty clay to clay
16.404	13.63		4.117	5.799	13	3	clay
16.568	17.51	0.7672	4.382	21.826	17	3	clay
16.732	24.63		4.466	30.549	24	3	clay
16.896	28.41	1.3698	4.821	34.239	27	3	clay
17.060	33.28		5.463	34.647	32	3	clay
17.224	43.09	2.2008	5.107	20.935	41	3	clay
17.388	67.91	2.2234	3.274	9.302	26	6	sandy silt to clayey silt
17.552	65.07	2.0030	3.078	3.826	25	6	sandy silt to clayey silt
17.717	58.81	1.3008	2.212	1.685	23	6	sandy silt to clayey silt
17.881	51.03		1.891	0.310	16	7	silty sand to sandy silt
18.045	41.58		3.148	-0.259	20	5	clayey silt to silty clay
18.209	24.45		8.577	1.071	23	3	clay
18.373	32.37	2.7413	8.467	8.448	31	3	clay
18.537	40.61	2.4567	6.050	9.104	39	3	clay
18.701	56.17	1.9937	3.549	5.759	27	5	clayey silt to silty clay
18.865	52.01	1.4216	2.734	2.536	20	6	sandy silt to clayey silt
19.029	44.46	0.9103	2.048	1.143	17	6	sandy silt to clayey silt
19.193	43.23	0.6581	1.522	0.360	14	7	silty sand to sandy silt
19.357	39.02		3.222	-0.158	19	5	clayey silt to silty clay
19.521	25.83		7.433	-0.336	25	3	clay
19.685	40.92		5.922	1.909	39	3	clay
19.849	42.25	2.7974	6.620	5.070	40	3	clay
20.013	42.46		4.547	5.094	27	4	silty clay to clay
20.177	51.55	1.2050	2.338	2.998	20	6	sandy silt to clayey silt
20.341	47.71	0.6923	1.451	0.643	15	7	silty sand to sandy silt
20.505	42.45		2.435	-0.174	16	6	sandy silt to clayey silt
20.669	25.60	0.9131	3.567	-0.547	12	5	clayey silt to silty clay
20.833	19.74	1.2111	6.136	0.206	19	3	clay
20.997	32.10		5.293	6.608	31	3	clay
21.161	46.04	2.1093	4.581	3.668	29	4	silty clay to clay
21.325	56.79	2.3698	4.173	0.785	27	5	clayey silt to silty clay
21.490	68.82		3.169	-0.467	26	6	sandy silt to clayey silt
21.654	79.69	1.6723	2.098	-0.988	25	7	silty sand to sandy silt
21.818	74.03		1.863	-1.460	24	7	silty sand to sandy silt
21.982	64.36	1.2922	2.008	-1.733	21	7	silty sand to sandy silt
22.146	60.05	1.3585	2.262	-1.735	23	6	sandy silt to clayey silt
22.310	52.98	1.6100	3.039	-1.661	20	6	sandy silt to clayey silt
22.474	37.24	1.8002	4.834	-1.455	36	3	clay
22.638	27.14	1.6543	6.095	-1.239	26	3	clay
22.802	27.06	1.5408	5.693	-0.328	26	3	clay
22.966	32.16	2.0429	6.352	2.867	31	3	clay
23.130	42.96	2.4425	5.686	9.953	41	3	clay
23.294	59.18	2.5147	4.249	10.853	28	5	clayey silt to silty clay
23.458	61.10	2.3695	3.878	6.373	29	5	clayey silt to silty clay
23.622	51.60	2.3781	4.608	5.695	33	4	silty clay to clay
23.950	58.99	3.2616	5.529	5.300	56	11	very stiff fine grained (*)
24.114	72.54	3.3779	4.657	3.898	46	4	silty clay to clay
24.278	83.95	3.3698	4.014	2.398	40	5	clayey silt to silty clay
24.442	89.00	2.7746	3.118	1.458	34	6	sandy silt to clayey silt
24.606	87.97	2.5376	2.885	0.425	34	6	sandy silt to clayey silt
24.770	83.40	2.1773	2.611	-0.259	32	6	sandy silt to clayey silt
- -	22.10	= 3	= = -		32	,	

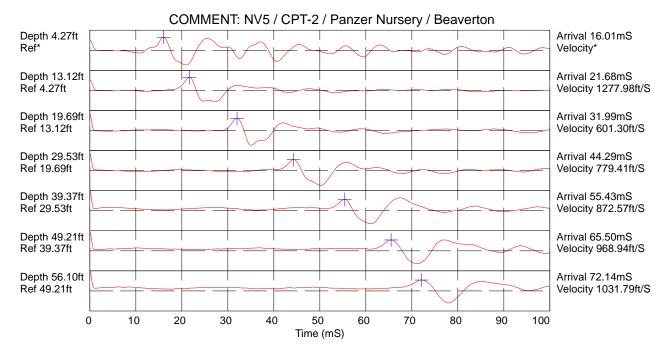
Depth	Tip (Qt)	Sleeve Friction (Fs)	F.Ratio	PP (U2)	SPT		Soil Behavior Type
ft	(tsf)	(tsf)	(%)	(psi)	(blows/ft)	Zone	UBC-1983
24.934	75.96	1.9063	2.510	-0.836	29	6	sandy silt to clayey silt
25.098	67.04	1.5339	2.288	-1.255	26	6	sandy silt to clayey silt
25.262	62.34	1.3476	2.162	-1.586	24	6	sandy silt to clayey silt
25.427	58.18	1.3109	2.253	-1.800	22	6	sandy silt to clayey silt
25.591	58.62	1.4333	2.445	-1.735	22	6	sandy silt to clayey silt
25.755	61.80	1.6281	2.634	-1.581	24	6	sandy silt to clayey silt
25.919	60.47	2.0698	3.423	-1.364	29	5	clayey silt to silty clay
26.083	44.61	2.1721	4.869	-1.151	28	4	silty clay to clay
26.247	38.59	2.1908	5.677	-0.296	37	3	clay
26.411	50.75	2.3861	4.702	7.494	32	4	silty clay to clay
26.575	64.73	3.4747	5.368	9.417	62	11	very stiff fine grained (*)
26.739	73.40	4.7707	6.499	9.812	70	11	very stiff fine grained (*)
26.903	76.82	5.3089	6.911	7.350	74	11	very stiff fine grained (*)
27.067	87.64	1.9556	2.231	4.192	28	7	silty sand to sandy silt
27.231	92.00	1.0643	1.157	1.442	22	8	sand to silty sand
27.395	59.63	0.8913	1.495	-0.224	19	7	silty sand to sandy silt
27.559	57.09	0.9094	1.593	-0.579	18	7	silty sand to sandy silt
27.723	55.49	1.0520	1.896	-0.721	18	7	silty sand to sandy silt
27.887	53.84	1.3119	2.437	-0.678	21	6	sandy silt to clayey silt
28.051	48.52	1.9402	3.999	-0.542	23	5	clayey silt to silty clay
28.215	38.21	1.7599	4.605	-0.398	24	4	silty clay to clay
28.379	16.70	1.2978	7.770	1.597	16	3	clay
28.543	15.38	0.7637	4.966	4.395	15	3	clay
28.707	14.08	0.6752	4.797	8.512	13	3	clay
28.871	19.25	1.3934	7.237	12.992	18	3	clay
29.035	50.09	2.4262	4.843	22.109	32	4	silty clay to clay
29.199	61.34		6.089	26.643	59	11	very stiff fine grained (*)
29.364	73.22		6.806	27.406	70	11	very stiff fine grained (*)
29.528	103.66	4.5206	4.361	12.735	99	11	very stiff fine grained (*)
29.692	112.53		3.322	2.376	43	6	sandy silt to clayey silt
29.856	108.26		2.706	0.131	41	6	sandy silt to clayey silt
30.020	94.31	2.5858	2.742	-0.478	36	6	sandy silt to clayey silt
30.184	78.93		2.892	-0.291	30	6	sandy silt to clayey silt
30.348	66.03		3.089	-0.029	25	6	sandy silt to clayey silt
30.512	48.06		3.825	0.125	23	5	clayey silt to silty clay
30.676	39.49	1.5117	3.828	0.716	19	5	clayey silt to silty clay
30.840	34.46		4.535	1.690	22	4	
31.004	30.93	1.7639	5.702	3.738	30	3	
31.168	38.63		5.763	6.749	37	3	clay
31.332	42.64	1.8628	4.368	5.078	27	4	silty clay to clay
31.496	63.44	1.4078	2.219	1.287	24	6	sandy silt to clayey silt
31.660	64.43		2.350	-0.320	25	6	sandy silt to clayey silt
31.824	50.12		3.685	-0.334	24	5	clayey silt to silty clay
31.988	31.30	1.5290	4.886	0.230	30	3	clay
32.152	17.68		5.953	2.456	17	3	clay
32.316	17.74	0.7342	4.137	7.972	17	3	clay
32.480	23.41	0.8841	3.777	11.454	15	4	silty clay to clay
32.644	31.55	1.8290	5.796	12.813	30	3	clay
32.808	37.26		5.688	12.767	36	3	clay
32.972	62.52		3.430	4.971	30	5	clayey silt to silty clay
33.136	70.01	1.8513	2.644	1.733	27	6	sandy silt to clayey silt
33.301	75.79	1.6892	2.229	-0.881	24	7	silty sand to sandy silt
33.465	71.07		2.361	-1.666	27	6	
33.103	,1.07	1.0702	2.301	1.000	27	0	Sana, Site to craye, Site

Depth	Tip (Ot)	Sleeve Friction (Fs)	F.Ratio	PP (U2)	SPT		Soil Behavior Type
ft	(tsf)	(tsf)	(%)	(psi)	(blows/ft)	Zone	UBC-1983
33.629	72.79	1.5603	2.144	-1.621	23	7	silty sand to sandy silt
33.793	72.68	1.6133	2.220	-1.842	23	7	silty sand to sandy silt
33.957	64.46	1.6956	2.631	-1.829	25	6	sandy silt to clayey silt
34.121	68.55	1.9123	2.790	-1.482	26	6	sandy silt to clayey silt
34.285	67.90	2.0911	3.080	-1.185	26	6	sandy silt to clayey silt
34.449	54.86	2.0925	3.814	-0.790	26	5	clayey silt to silty clay
34.613	46.94	1.9283	4.108	-0.395	22	5	clayey silt to silty clay
34.777	36.94	1.6099	4.359	0.142	24	4	silty clay to clay
34.941	25.51	1.4184	5.560	0.910	24	3	clay
35.105	26.60	1.4764	5.551	2.878	25	3	clay
35.269	58.94	2.0869	3.541	4.045	28	5	clayey silt to silty clay
35.433	81.78	2.3952	2.929	0.686	31	6	sandy silt to clayey silt
35.597	90.64	2.1941	2.421	-0.398	29	7	silty sand to sandy silt
35.761	96.50	2.1392	2.217	-1.103	31	7	silty sand to sandy silt
35.925	95.56	2.2565	2.361	-1.594	31	7	silty sand to sandy silt
36.089	77.31	2.6447	3.421	-1.682	30	6	sandy silt to clayey silt
36.253	49.69	2.4610	4.952	6.736	32	4	silty clay to clay
36.417	29.37	1.9417	6.612	6.942	28	3	clay
36.581	28.09	1.7000	6.052	11.753	27	3	clay
36.745	42.63	1.9163	4.495	19.835	27	4	silty clay to clay
36.909	63.42	3.9409	6.214	23.842	61		very stiff fine grained (*)
37.073	100.09	5.8152	5.810	18.307	96		very stiff fine grained (*)
37.238	142.59	5.9388	4.165	2.315	137	11	very stiff fine grained (*)
37.402	130.75	4.7352	3.622	-2.787	50	6	sandy silt to clayey silt
37.566	117.35	3.0738	2.619	-6.103	37	7	silty sand to sandy silt
37.730	108.05	2.5520	2.362	-6.336	34	7	silty sand to sandy silt
37.894	89.72	2.5610	2.854	-6.349	34	6	sandy silt to clayey silt
38.058	68.41	2.5604	3.743	-6.074	33	5	clayey silt to silty clay
38.222	45.55	2.3863	5.239	-5.754	44	3	clay
38.386	42.36	2.3382	5.520	-5.038	41	3	clay
38.550	50.68	2.7171	5.361	-4.066	49	3	clay
38.714	70.14	3.7420	5.335	-3.215	67		very stiff fine grained (*)
38.878	86.29	5.0428	5.844	-2.707	83		very stiff fine grained (*)
39.042	95.70	5.4049	5.648	-2.737	92		very stiff fine grained (*)
39.206	76.19	4.3287	5.682	-3.199	73		very stiff fine grained (*)
39.370	59.68	3.4231	5.736	-2.950	57	11	very stiff fine grained (*)
39.534	70.38	2.3549	3.346	-2.307	27	Ū	sandy silt to clayey silt
39.698	72.46	1.9466	2.686	-3.126	28	6	sandy silt to clayey silt
39.862 40.026	67.72 63.83	1.8810	2.777 2.070	-3.562 -3.676	26 20	6	sandy silt to clayey silt silty sand to sandy silt
40.026	65.57	1.3210 1.1450	1.746	-3.676 -3.805	21	7	silty sand to sandy silt silty sand to sandy silt
				-3.946	23	6	
40.354 40.518	58.74 51.62	1.3893 1.6644	2.365 3.225	-3.946 -3.989	25 25	5	sandy silt to clayey silt clayey silt to silty clay
40.682	47.47	1.7923	3.776	-3.871	23	5	clayey silt to silty clay
40.846	38.28	1.8055	4.716	-3.650	24	4	silty clay to clay
41.011	33.26	1.9597	5.892	-3.044	32	3	clay
41.175	44.48	2.2700	5.103	-1.145	43	3	clay
41.339	71.82	2.9486	4.106	-0.769	34	5	clayey silt to silty clay
41.503	84.91	3.4499	4.063	-1.359	41	5	clayey silt to silty clay
41.667	90.22	2.5768	2.856	-2.050	35	6	sandy silt to clayey silt
41.831	86.45	2.1796	2.521	-2.854	33	6	sandy silt to clayey silt
41.995	64.82	2.0033	3.091	-3.348	25	6	sandy silt to clayey silt
42.159	39.97	1.8792	4.702	-3.335	26	4	silty clay to clay
		=	 	2.333	20	-	

Depth		Sleeve Friction (Fs)	F.Ratio	PP (U2)	SPT		Soil Behavior Type
ft	(tsf)	(tsf)	(%)	(psi)	(blows/ft)	Zone	<u>UBC-</u> 1983
42.323	31.77	1.6912	5.323	-2.851	30	3	clay
42.487	36.99	2.3860	6.451	-2.050	35	3	clay
42.651	46.14	3.0348	6.578	-1.591	44	3	clay
42.815	98.24	4.0331	4.105	-1.199	47	5	clayey silt to silty clay
42.979	107.75	4.6388	4.305	-1.960	103	11	<pre>very stiff fine grained (*)</pre>
43.143	96.08	4.0573	4.223	-2.932	46	5	clayey silt to silty clay
43.307	90.98	2.8206	3.100	-3.631	35	6	sandy silt to clayey silt
43.471	98.98		2.312	-4.176	32	7	silty sand to sandy silt
43.635	110.81	2.4120	2.177	-4.440	35	7	silty sand to sandy silt
43.799	106.67		2.828	-4.517	41	6	sandy silt to clayey silt
43.963	91.71		3.684	-4.421	44	5	clayey silt to silty clay
44.127	73.77		4.475	-4.210	35	5	clayey silt to silty clay
44.291	51.37		5.016	-3.893	33	4	silty clay to clay
44.455	34.49		5.922	-3.196	33	3	clay
44.619	58.42		3.998	1.415	28	5	clayey silt to silty clay
44.783	76.67		4.674	2.000	73	_	very stiff fine grained (*)
44.948	78.30		6.459	1.770	75 75		very stiff fine grained (*)
	77.63		6.109		74		
45.112 45.276	78.51			1.242	38	5	very stiff fine grained (*)
			4.187	0.019		_	clayey silt to silty clay
45.440	78.17		3.939	-0.905	37	5	clayey silt to silty clay
45.604	59.12		4.778	-1.783	38	4	silty clay to clay
45.768	56.99		5.236	-1.890	55	3	clay
45.932	56.72		5.035	-2.056	36	4	silty clay to clay
46.096	78.43		2.762	-1.359	30	6	sandy silt to clayey silt
46.260	83.85		2.087	-2.341	27	7	silty sand to sandy silt
46.424	80.54		2.297	-3.156	26	7	silty sand to sandy silt
46.588	74.26		3.264	-3.305	28	6	sandy silt to clayey silt
46.752	67.25		3.320	-3.081	26	6	sandy silt to clayey silt
46.916	42.97		5.303	-2.528	41	3	clay
47.080	40.55		6.291	0.115	39	3	clay
47.244	64.34		4.830	1.519	41	4	silty clay to clay
47.408	66.83		5.522	1.685	64		<pre>very stiff fine grained (*)</pre>
47.572	88.15	4.8994	5.558	2.336	84	11	<pre>very stiff fine grained (*)</pre>
47.736	111.23		4.257	0.489	107	11	<pre>very stiff fine grained (*)</pre>
47.900	121.28	4.4075	3.634	-1.898	46	6	sandy silt to clayey silt
48.064	109.89	4.0340	3.671	-2.614	42	6	sandy silt to clayey silt
48.228	99.45	2.7640	2.779	-3.175	38	6	sandy silt to clayey silt
48.392	94.65	2.0583	2.175	-3.500	30	7	silty sand to sandy silt
48.556	88.60	1.9356	2.185	-3.797	28	7	silty sand to sandy silt
48.720	82.57	2.0240	2.451	-3.962	32	6	sandy silt to clayey silt
48.885	78.30	2.0908	2.670	-3.933	30	6	sandy silt to clayey silt
49.049	71.42	2.3816	3.335	-3.837	27	6	sandy silt to clayey silt
49.213	64.46	2.7480	4.263	-3.679	31	5	clayey silt to silty clay
49.377	59.56		5.662	4.443	57	11	very stiff fine grained (*)
49.541	80.73		5.082	7.372	77		very stiff fine grained (*)
49.705	90.95		5.523	7.617	87		very stiff fine grained (*)
49.869	87.62		5.918	11.264	84		very stiff fine grained (*)
50.033	80.56		5.664	11.772	77		very stiff fine grained (*)
50.055	71.83		4.984	13.224	69		very stiff fine grained (*)
50.361	65.51		5.533	13.237	63		very stiff fine grained (*)
50.501	57.47		7.250	14.097	55	3	clay
50.689	77.20		5.876	9.128	74		very stiff fine grained (*)
	70.45		5.787		74 67		very stiff fine grained (*)
50.853	70.45	4.0771	5./0/	1.396	6 /	TT	very scill line grained (*)


Depth	Tip (Qt) Sleeve	Friction (Fs)	F.Ratio	PP (U2)	SPT	Soil Behavior Type
ft	(tsf)	(tsf)	(%)	(psi)	(blows/ft)	Zone UBC-1983
51.017	79.94	3.5483	4.439	-0.756	38	5 clayey silt to silty clay
51.181	85.39	3.2780	3.839	-2.152	41	5 clayey silt to silty clay
51.345	78.76	1.7606	2.235	-3.094	25	7 silty sand to sandy silt
51.509	77.32	1.5199	1.966	-3.716	25	7 silty sand to sandy silt
51.673	73.51	1.4473	1.969	-4.307	23	7 silty sand to sandy silt
51.837	68.33	1.6219	2.374	-4.352	26	6 sandy silt to clayey silt
52.001	63.55	1.8763	2.953	-4.315	24	6 sandy silt to clayey silt
52.165	52.77	2.5239	4.783	-4.184	34	4 silty clay to clay
52.329	41.12	2.8741	6.989	-4.016	39	3 clay
52.493	54.91	4.2616	7.761	-2.312	53	3 clay
52.657	106.48	6.4695	6.076	1.914	102	11 very stiff fine grained (*)
52.822	122.93	8.6226	7.014	1.954	118	11 very stiff fine grained (*)
52.986	100.92	8.2514	8.176	-1.364	97	11 very stiff fine grained (*)
53.150	103.81	7.5747	7.296	-0.163	99	11 very stiff fine grained (*)
53.314	128.99	7.1756	5.563	0.117	124	11 very stiff fine grained (*)
53.478	163.56	8.5172	5.207	-0.790	157	11 very stiff fine grained (*)
53.642	185.54	7.7027	4.151	-2.107	178	11 very stiff fine grained (*)
53.806	178.08	6.5353	3.670	-3.260	85	12 sand to clayey sand (*)
53.970	149.96	3.9056	2.604	-4.157	48	7 silty sand to sandy silt
54.134	142.35	4.4312	3.113	-4.477	55	6 sandy silt to clayey silt
54.298	154.51	4.2076	2.723	-4.696	49	7 silty sand to sandy silt
54.462	90.23	3.8726	4.292	-4.053	43	5 clayey silt to silty clay
54.626	70.16	3.0831	4.395	-4.026	34	5 clayey silt to silty clay
54.790	68.38	3.7334	5.460	-3.805	65	11 very stiff fine grained (*)
54.954	77.21	5.7384	7.432	-3.372	74	11 very stiff fine grained (*)
55.118	135.39	7.1620	5.290	-2.937	130	11 very stiff fine grained (*)
55.282	170.39	8.2758	4.857	-3.233	163	11 very stiff fine grained (*)
55.446	173.62	8.3303	4.798	-3.599	166	11 very stiff fine grained (*)
55.610	155.22	8.3221	5.362	-4.045	149	11 very stiff fine grained (*)
55.774	144.21	8.2321	5.708	-4.178	138	11 very stiff fine grained (*)

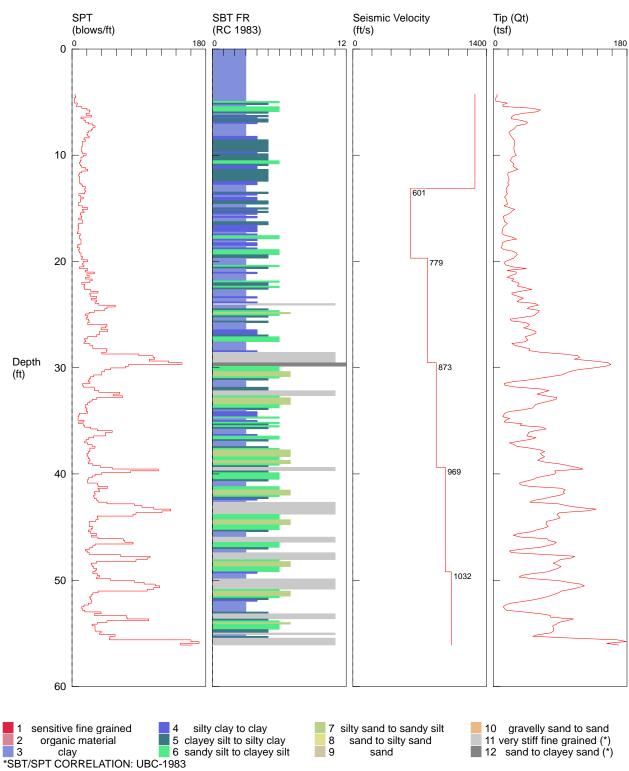
NV5 / CPT-2 / Panzer Nursery / Beaverton


OPERATOR: OGE BAK CONE ID: DDG1532 HOLE NUMBER: CPT-2

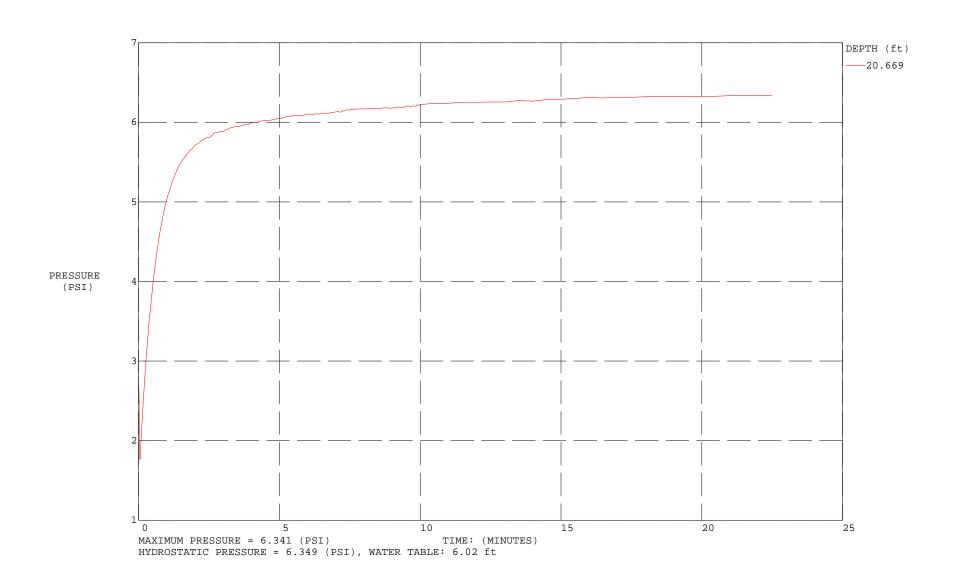
TEST DATE: 8/2/2022 11:04:23 AM

TOTAL DEPTH: 56.102 ft

¹ sensitive fine gra 4 silty clay to cl 7 silty sand to sandy 10 gravelly sand to sand 2 organic materia 5 clayey silt to silt 8 sand to silty sa 11 very stiff fine grained (*) 3 clay 6 sandy silt to claye 9 sand 12 sand to clayey sand (*) *SBT/SPT CORRELATION: UBC-1983



Hammer to Rod String Distance (ft): 5.58 * = Not Determined


NV5 / CPT-2 / Panzer Nursery / Beaverton

OPERATOR: OGE BAK CONE ID: DDG1532 HOLE NUMBER: CPT-2

TEST DATE: 8/2/2022 11:04:23 AM TOTAL DEPTH: 56.102 ft

TEST DATE: 8/2/2022 11:04:23 AM

NV5 / CPT-2 / Panzer Nursery / Beaverton

OPERATOR: OGE BAK CONE ID: DDG1532 HOLE NUMBER: CPT-2

TEST DATE: 8/2/2022 11:04:23 AM

TOTAL DEPTH: 56.102 ft

Depth	Tip (Qt) Sleeve		F.Ratio	PP (U2)	SPT	_	Soil Behavior Type
ft	(tsf)	(tsf)	(%)	(psi)	(blows/ft)	Zone	<u>UBC-</u> 1983
4.265	4.57	0.1964	4.295	0.563	4	3	clay
4.429	5.44	0.2012	3.702	-1.076	5	3	clay
4.593	3.39	0.1655	4.890	-3.028	3	3	clay
4.757	3.04	0.1144	3.766	-3.522	3	3	clay
4.921	3.56	0.1245	3.495	-2.625	3	3	clay
5.085	18.72	0.2507	1.339	-1.864	7	6	sandy silt to clayey sil
5.249	12.74	0.2698	2.118	-1.391	6	5	clayey silt to silty cla
5.413	13.37	0.6725	5.030	5.276	13	3	clay
5.577	52.58	1.3301	2.529	8.434	20	6	sandy silt to clayey si
5.741	63.25	1.5494	2.449	2.657	24	6	sandy silt to clayey si
5.906	59.34	1.3835	2.331	-1.663	23	6	sandy silt to clayey sil
6.070	38.84	1.4174	3.649	-2.718	19	5	clayey silt to silty cla
6.234	27.59	1.4066	5.098	-2.966	26	3	clay
6.398	24.30	0.8321	3.424	-3.647	12	5	clayey silt to silty cla
6.562	24.32	0.9817	4.037	-3.217	16	4	silty clay to clay
6.726	38.52	1.2045	3.127	-0.740	18	5	clayey silt to silty cla
6.890	46.14	1.6079	3.485	-2.205	22	5	clayey silt to silty cla
7.054	43.85	1.8665	4.256	-3.150	28	4	silty clay to clay
7.218	31.96	1.8485	5.783	-3.703	31	3	clay
7.382	29.64	1.5983	5.392	-3.639	28	3	clay
7.546	27.55	1.4063	5.104	-3.201	26	3	clay
7.710	23.13	1.2355	5.341	-3.281	22	3	clay
7.874	20.87	1.1216	5.374	-3.017	20	3	clay
8.038	22.38	1.1803	5.274	-2.691	21	3	clay
8.202	24.26	1.1762	4.848	-2.291	23	3	clay
8.366	25.77	1.1263	4.371	-1.845	16	4	silty clay to clay
8.530	27.64	1.0833	3.920	-1.140	18	4	silty clay to clay
8.694	28.91	1.0670	3.691	-0.625	14	5	clayey silt to silty clay
8.858	28.90	0.9698	3.355	-0.152	14	5	clayey silt to silty clay
9.022	28.40	0.8929	3.144	0.232	14	5	clayey silt to silty clay
9.186	28.08	0.8244	2.936	0.710	13	5	clayey silt to silty clay
9.350	27.70	0.8132	2.936	1.153	13	5	clayey silt to silty clay
9.514	27.93	0.7907	2.831	1.829	13	5	clayey silt to silty clayer
9.678	28.88	1.0836	3.752	2.395	14	5	clayey silt to silty cl
9.843	29.37	1.2356	4.207	2.857	19	4	silty clay to clay
10.007	31.07	1.1590	3.731	9.937	15		clayey silt to silty clay
10.171	25.46	0.7956	3.125	10.447	12	5	clayey silt to silty cl
10.171	22.98	0.7936	2.933	12.113	11	5	clayey silt to silty cl
10.499	25.46	0.5772	2.268	15.955	10	6	sandy silt to clayey si
						-	
10.827	28.12	0.6348	2.258	18.892	11	6	sandy silt to clayey si
10.991	26.34	0.8698	3.302	21.220	13	5	clayey silt to silty cl
11.155	28.63	1.2415	4.337	24.734	18	4	silty clay to clay
11.319	33.09	1.3897	4.200	26.491	21	4	silty clay to clay
11.483	26.79	0.9634	3.596	21.063	13	5	clayey silt to silty cla

Depth		Sleeve Friction (Fs)	F.Ratio	PP (U2)	SPT		Soil Behavior Type
ft	(tsf)	(tsf)	(%)	(psi)	(blows/ft)	Zone	UBC-1983
11.647	20.09	0.6286	3.129	24.640	10	5	clayey silt to silty clay
11.811	19.43	0.5758	2.963	31.478	9	5	clayey silt to silty clay
11.975	19.98	0.6232	3.120	37.213	10	5	clayey silt to silty clay
12.139	20.45	0.7080	3.463	42.029	10	5	clayey silt to silty clay
12.303	21.57	0.6949	3.221	44.176	10	5	clayey silt to silty clay
12.467	20.06	0.6776	3.377	43.426	10	5	clayey silt to silty clay
12.631	19.54	0.7295	3.734	49.567	12	4	silty clay to clay
12.795	21.53	0.7978	3.705	42.523	14	4	silty clay to clay
12.959	18.87	1.2827	6.796	33.553	18	3	clay
13.123	17.85	1.1102	6.221	36.997	17	3	clay
13.287	18.45	0.8379	4.543	13.843	18	3	clay
13.451	17.45	0.0379	4.422	17.725	17	3	clay
13.615	19.06	0.6183	3.243	20.710	9	5	clayey silt to silty clay
13.780	17.11	0.6148	3.593	20.710	11	4	silty clay to clay
					15	3	
13.944	15.17	0.6115	4.031	24.237		3 4	clay
14.108	17.14	0.5819	3.395	28.464	11	_	silty clay to clay
14.272	17.45	0.6501	3.725	30.941	11	4	silty clay to clay
14.436	18.58	0.6259	3.369	35.454	9	5	clayey silt to silty clay
14.600	19.15	0.6127	3.200	18.385	9	5	clayey silt to silty clay
14.764	14.58	0.6833	4.687	18.233	14	3	clay
14.928	21.42	0.9204	4.297	23.215	21	3	clay
15.092	28.90	1.0781	3.731	13.422	14	5	clayey silt to silty clay
15.256	25.41	1.0161	3.999	4.779	16	4	silty clay to clay
15.420	23.36	0.6827	2.923	2.838	11	5	clayey silt to silty clay
15.584	18.66	0.6919	3.708	2.269	12	4	silty clay to clay
15.748	13.28	0.6088	4.585	2.977	13	3	clay
15.912	13.89	0.4909	3.534	4.424	9	4	silty clay to clay
16.076	14.81	0.5886	3.975	5.436	14	3	clay
16.240	14.71	0.7717	5.245	6.330	14	3	clay
16.404	18.96	0.6356	3.352	6.346	9	5	clayey silt to silty clay
16.568	16.80	0.5354	3.186	5.324	8	5	clayey silt to silty clay
16.732	13.93	0.4570	3.280	6.293	9	4	silty clay to clay
16.896	12.77	0.4173	3.268	7.566	8	4	silty clay to clay
17.060	12.92	0.3848	2.978	9.030	8	4	silty clay to clay
17.224	11.71	0.4125	3.523	10.106	7	4	silty clay to clay
17.388	11.92	0.4823	4.047	11.553	11	3	clay
17.552	16.15	0.5810	3.598	13.101	10	4	silty clay to clay
17.717	25.81	0.4937	1.913	9.729	10	6	sandy silt to clayey silt
17.881	31.30	0.8476	2.708	4.806	12	6	sandy silt to clayey silt
18.045	18.20	0.7272	3.995	2.809	12	4	silty clay to clay
18.209	12.36	0.4781	3.869	4.016	12	3	clay
18.373	11.98	0.3700	3.089	5.698	8	4	silty clay to clay
18.537	11.75	0.3700	3.083	6.963	7	4	silty clay to clay
18.701	10.81	0.3021	4.366	8.191	10	3	clay
18.865	13.84	0.4720	3.653	9.534	9	4	silty clay to clay
					10	6	
19.029	26.54	0.4626	1.743	8.880		6	sandy silt to clayey silt
19.193	30.95	0.5223	1.688	3.471	12	6	sandy silt to clayey silt
19.357	32.21	0.6588	2.045	1.185	12	6	sandy silt to clayey silt
19.521	29.73	0.9150	3.078	0.531	14	5	clayey silt to silty clay
19.685	27.53	1.0310	3.744	0.403	13	5	clayey silt to silty clay
19.849	21.66	1.0653	4.918	1.484	21	3	clay
20.013	15.80	0.7253	4.590	1.335	15	3	clay
20.177	14.95	0.6051	4.046	2.809	14	3	clay

Depth		leeve Friction (Fs)	F.Ratio	PP (U2)	SPT		Soil Behavior Type
ft	(tsf)	(tsf)	(웅)	(psi)	(blows/ft)	Zone	<u>UBC-</u> 1983
20.341	17.14	0.9154	5.342	4.122	16	3	clay
20.505	26.98	0.3281	1.216	4.985	10	6	sandy silt to clayey silt
20.669	44.54	1.3877	3.116	2.731	21	5	clayey silt to silty clay
20.833	18.53	1.5120	8.161	6.344	18	3	clay
20.997	30.97	1.4859	4.798	7.278	30	3	clay
21.161	30.66	1.3559	4.422	8.106	20	4	silty clay to clay
21.325	23.57	1.2588	5.341	7.833	23	3	clay
21.490	18.97	1.0977	5.788	9.262	18	3	clay
21.654	27.72	1.3687	4.938	9.168	27	3	clay
21.818	24.74	1.2290	4.967	6.389	24	3	clay
21.982	33.32	0.9253	2.777	4.827	13	6	sandy silt to clayey silt
22.146	34.97	1.0351	2.960	2.446	17	5	clayey silt to silty clay
22.310	32.40	1.0561	3.260	1.468	16	5	clayey silt to silty clay
22.474	43.47	1.1633	2.676	0.828	17	6	sandy silt to clayey silt
22.638	51.57	1.7030	3.302	0.051	25	5	clayey silt to silty clay
22.802	36.83	2.2633	6.145	-0.192	35	3	clay
22.966	24.70	2.0750	8.400	0.798	24	3	clay
23.130	26.56	1.7682	6.658	14.708	25	3	clay
23.294	34.01	1.7900	5.264	21.071	33	3	clay
23.458	40.54	1.6878	4.164	12.081	26	4	silty clay to clay
23.622	34.81	1.6916	4.860	4.846	33	3	clay
23.786	31.90	1.9252	6.035	2.592	31	3	clay
23.950	56.63	2.8724	5.072	3.596	36	4	silty clay to clay
24.114	60.82	3.4325	5.644	3.295	58	11	very stiff fine grained (*)
24.278	48.91	3.0953	6.329	2.993	47	3	clay
24.442	45.95	2.8477	6.197	3.150	44	3	clay
24.606	61.84	2.4867	4.021	2.536	30	5	clayey silt to silty clay
24.770	60.76	1.8963	3.121	0.993	23	6	sandy silt to clayey silt
24.934	57.42	1.1272	1.963	-0.075	18	7	silty sand to sandy silt
25.098	55.31	1.1565	2.091	-0.732	21	6	sandy silt to clayey silt
25.262	38.77	1.3134	3.387	-1.156	19	5	clayey silt to silty clay
25.427	22.97	1.0892	4.743	-1.303	22	3	clay
25.591	24.34	1.0785	4.432	-0.315	23	3	clay
25.755	43.50	1.7835	4.100	0.283	21	5	clayey silt to silty clay
25.919	48.69	2.4522	5.036	-0.027	47	3	clay
26.083	47.06	2.8895	6.140	-0.203	45	3	clay
26.247	41.07	2.9097	7.085	-0.136	39	3	clay
26.411	49.97	2.8532	5.709	0.969	48	3	clay
26.575	57.26	2.8617	4.998	0.555	37	4	silty clay to clay
26.739	57.71	2.9717	5.150	0.422	37	4	silty clay to clay
26.903	52.18	2.4602	4.715	-0.318	33	4	silty clay to clay
27.067	43.12	1.4942	3.465	-1.007	21	5	clayey silt to silty clay
27.231	44.20	0.9390	2.124	-1.605	17	6	sandy silt to clayey silt
27.395	46.94	0.9138	1.947	-1.938	18	6	sandy silt to clayey silt
27.559	42.27	1.2481	2.953	-2.200	16	6	sandy silt to clayey silt
27.723	25.08	1.2657	5.047	-2.264	24	3	clay
27.887	28.98	2.1442	7.399	-1.968	28	3	clay
28.215	49.00	2.6482	5.404	-0.940	47	3	clay
28.379	47.95	2.6072	5.437	-0.278	46	3	clay
28.543	63.33	3.0097	4.752	0.067	40	4	silty clay to clay
28.707	93.93	4.3987	4.683	0.227	90	_	very stiff fine grained (*)
28.871	113.85	5.8786	5.163	0.435	109		very stiff fine grained (*)

Depth	Tip (Qt) Sl	leeve Friction (Fs)	F.Ratio	PP (U2)	SPT		Soil Behavior Type
ft	(tsf)	(tsf)	(%)	(psi)	(blows/ft)	Zone	UBC-1983
29.199	109.01	7.0831	6.498	1.351	104	11	very stiff fine grained (*)
29.364	135.23	6.6984	4.953	1.287	130	11	very stiff fine grained (*)
29.528	154.45	6.6635	4.314	0.075	148	11	very stiff fine grained (*)
29.692	158.16	6.2707	3.965	0.427	76	12	sand to clayey sand (*)
29.856	151.26	5.5101	3.643	-0.814	72	12	sand to clayey sand (*)
30.020	135.33	4.3632	3.224	-1.439	52	6	sandy silt to clayey silt
30.184	114.52	3.4973	3.054	-1.797	44	6	sandy silt to clayey silt
30.348	103.18	2.6612	2.579	-2.077	40	6	sandy silt to clayey silt
30.676	92.05	1.7078	1.855	-2.368	29	7	silty sand to sandy silt
30.840	77.27	1.3653	1.767	-2.608	25	7	silty sand to sandy silt
31.004	61.20	1.4609	2.387	-2.854	23	6	sandy silt to clayey silt
31.168	45.76	1.6656	3.640	-2.806	22	5	clayey silt to silty clay
31.332	25.31	1.5495	6.122	-2.560	24	3	clay
31.496	14.49	1.1961	8.254	-2.064	14	3	clay
31.660	15.92	1.3736	8.627	4.686	15	3	clay
31.824	31.55	1.8042	5.718	15.549	30	3	clay
31.988	63.01	2.5418	4.034	11.537	30	5	clayey silt to silty clay
32.152	74.98	3.2104	4.282	4.683	36	5	clayey silt to silty clay
32.316	66.77	3.7104	5.557	1.896	64	11	very stiff fine grained (*)
32.480	58.88	3.9173	6.653	0.956	56	11	very stiff fine grained (*)
32.644	70.76	3.3427	4.724	0.796	68		very stiff fine grained (*)
32.808	85.43	2.4075	2.818	-0.737	33	6	sandy silt to clayey silt
32.972	84.44	1.8581	2.201	0.045	27	7	silty sand to sandy silt
33.136	75.65	1.4898	1.969	-1.679	24	7	silty sand to sandy silt
33.301	65.34	1.2923	1.978	-2.152	21	7	silty sand to sandy silt
33.465	57.00	1.1515	2.020	-2.344	18	7	silty sand to sandy silt
33.793	52.93	1.2999	2.456	-2.307	20	6	sandy silt to clayey silt
33.957	40.23	1.4193	3.528	-1.826	19	5	clayey silt to silty clay
34.121	21.56	1.0151	4.708	-1.266	21	3	clay
34.285	15.22	0.5591	3.673	0.643	10	4	silty clay to clay
34.449	14.06	0.4857	3.456	4.726	9	4	silty clay to clay
34.613	12.89	0.3764	2.921	7.353	8	4	silty clay to clay
34.777	22.01	0.3955	1.797	8.856	8	6	sandy silt to clayey silt
34.941	16.51	0.7324	4.436	8.490	16	3	clay
35.105	14.76	0.5453	3.696	10.861	9	4	silty clay to clay
35.269	38.51	1.0112	2.626	6.264	15	6	sandy silt to clayey silt
35.433	35.90	1.3745	3.829	3.284	17	5	clayey silt to silty clay
35.597	66.34	1.9892	2.998	5.236	25	6	sandy silt to clayey silt
35.761	70.98	2.7173	3.828	3.012	34	5	clayey silt to silty clay
35.925	56.42	3.5867	6.357	1.439	54	3	clay
36.089	47.50	3.3862	7.128	2.107	45	3	clay
36.253	46.64	2.6240	5.626	5.081	45	3	clay
36.417	45.25	1.9362	4.279	3.305	29	4	silty clay to clay
36.581	57.69	1.5162	2.628	0.667	22	6	sandy silt to clayey silt
36.745	49.59	1.2654	2.552	-1.119	19	6	sandy silt to clayey silt
36.909	35.32	1.3450	3.808	-1.290	17	5	clayey silt to clayey silt
37.073	21.78	1.1904	5.465	0.320	21	3	clay
37.073	28.04	1.4642	5.222	7.676	27	3	clay
37.236	32.42	1.7476	5.390	9.043	31	3	clay
37.566	50.04	1.7470	3.739	5.671	24	5	clayey silt to silty clay
37.730	62.69	1.5863	2.530	1.695	24	6	sandy silt to clayey silt
37.730	69.22	1.3248	1.914	-0.216	22	7	silty sand to sandy silt
38.058	63.60	1.2343	1.941	-1.119	20	7	
30.030	03.00	1.2343	1.241	-1.119	20	/	SIICY SAIR TO SAIRLY SIIT

Depth		Sleeve Friction (Fs)	F.Ratio	PP (U2)	SPT		Soil Behavior Type
ft	(tsf)	(tsf)	(%)	(psi)	(blows/ft)	Zone	<u>UBC-</u> 1983
38.222	65.38		1.849	-1.351	21	7	
38.386	69.11	1.3697	1.982	-1.687	22	7	silty sand to sandy silt
38.550	63.47	1.5353	2.419	-1.810	24	6	sandy silt to clayey silt
38.714	59.67	1.4648	2.455	-1.541	23	6	sandy silt to clayey silt
38.878	69.43	1.4119	2.034	-1.060	22	7	silty sand to sandy silt
39.042	88.46	1.5679	1.773	-0.635	28	7	silty sand to sandy silt
39.206	100.46		2.872	-0.395	38	6	sandy silt to clayey silt
39.370	111.75	4.4956	4.023	-0.125	54	5	clayey silt to silty clay
39.534	120.69	4.9275	4.083	0.649	116	11	very stiff fine grained (*)
39.698	82.63	4.5351	5.488	-2.037	79	11	very stiff fine grained (*)
39.862	84.47	3.5354	4.186	-2.181	40	5	clayey silt to silty clay
40.026	82.22	2.7539	3.350	-2.902	31	6	sandy silt to clayey silt
40.190	69.56	1.6078	2.311	-3.319	27	6	sandy silt to clayey silt
40.354	58.02	1.2152	2.094	-3.615	22	6	sandy silt to clayey silt
40.518	53.97	1.4663	2.717	-3.636	21	6	sandy silt to clayey silt
40.682	43.78	1.8071	4.127	-3.580	21	5	clayey silt to silty clay
40.846	35.22	1.8044	5.123	-3.199	34	3	clay
41.011	36.30	2.3016	6.340	-2.414	35	3	clay
41.175	50.17	3.0082	5.997	-1.610	48	3	clay
41.339	91.62	3.3208	3.625	-1.613	35	6	sandy silt to clayey silt
41.503	96.80	2.9752	3.073	-2.331	37	6	sandy silt to clayey silt
41.667	93.90	2.2133	2.357	-2.769	30	7	silty sand to sandy silt
41.831	95.89	2.0780	2.167	-3.046	31	7	silty sand to sandy silt
41.995	89.85	2.1744	2.420	-3.140	29	7	silty sand to sandy silt
42.159	77.73	2.1663	2.787	-3.158	30	6	sandy silt to clayey silt
42.323	68.54	2.3954	3.495	-2.993	33	5	clayey silt to silty clay
42.487	54.47	2.7501	5.049	-2.638	35	4	silty clay to clay
42.651	49.46	3.4236	6.922	-0.993	47	3	clay
42.815	87.94	4.7104	5.356	26.181	84	11	very stiff fine grained (*)
42.979	98.47	6.7084	6.813	13.779	94	11	very stiff fine grained (*)
43.143	114.49	8.1693	7.136	14.148	110	11	very stiff fine grained (*)
43.307	138.45	9.1802	6.631	6.232	133	11	very stiff fine grained (*)
43.471	126.31	7.1797	5.684	1.890	121	11	very stiff fine grained (*)
43.635	89.34	6.0612	6.784	-0.232	86	11	very stiff fine grained (*)
43.799	85.82	4.5095	5.254	-1.695	82	11	very stiff fine grained (*)
43.963	87.68	3.0356	3.462	-2.427	34	6	sandy silt to clayey silt
44.127	90.09	2.4556	2.726	-3.102	35	6	sandy silt to clayey silt
44.291	83.34	2.2468	2.696	-3.420	32	6	sandy silt to clayey silt
44.455	71.68	1.5611	2.178	-3.687	23	7	silty sand to sandy silt
44.619	71.08	1.3369	1.881	-3.970	23	7	silty sand to sandy silt
44.783	71.88	1.5932	2.216	-4.053	23	7	silty sand to sandy silt
44.948	73.98	1.8101	2.447	-4.016	28	6	sandy silt to clayey silt
45.112	67.82	1.8890	2.785	-3.799	26	6	sandy silt to clayey silt
45.276	57.86	1.8400	3.180	-3.482	22	6	sandy silt to clayey silt
45.440	51.28	1.9202	3.744	-3.148	25	5	clayey silt to silty clay
45.604	34.22	1.7472	5.105	-2.841	33	3	clay
45.768	26.79	2.0492	7.649	-2.128	26	3	clay
45.932	36.37	2.5186	6.924	2.568	35	3	clay
46.096	72.48		4.786	7.836	69	11	very stiff fine grained (*)
46.260	74.37	4.2895	5.768	4.854	71		very stiff fine grained (*)
46.424	85.16		4.841	2.285	82		very stiff fine grained (*)
46.588	81.85	2.8729	3.510	-1.164	31	6	sandy silt to clayey silt
46.752	72.62	1.6543	2.278	-2.422	28	6	sandy silt to clayey silt
10.752	,2.02	1.0343	2.270	2.422	20	0	bana, bite to crayey bite

ft 46.916 47.080 47.244 47.408 47.572 47.736	(tsf) 62.08 37.59 21.92	(tsf) 1.7513	(%) 2.821	(psi)	(blows/ft)	Zone	UBC-1983
47.080 47.244 47.408 47.572	37.59		2 0 0 1				
47.244 47.408 47.572				-2.785	24	6	
47.408 47.572	21 92	1.2669	3.370	-2.745	18	5	clayey silt to silty clay
47.572		1.2294	5.607	-1.583	21	3	clay
	24.40	2.4206	9.922	11.459	23	3	clay
47 736	67.43	4.1996	6.228	23.554	65		very stiff fine grained (*)
	109.58	5.6407	5.147	8.215	105		very stiff fine grained (*)
47.900	105.74	5.9259	5.604	2.072	101		very stiff fine grained (*)
48.064	90.11	4.9891	5.537	-0.187	86	11	
48.228	86.65	2.8594	3.300	-1.442	33	6	sandy silt to clayey silt
48.392	80.54	1.6939	2.103	-2.614	26	7	
48.556	86.02	1.7038	1.981	-3.249	27	7	silty sand to sandy silt
48.720	91.13	2.0733	2.275	-3.292	29	7	silty sand to sandy silt
48.885	86.89	2.2363	2.574	-3.073	33	6	sandy silt to clayey silt
49.049	79.85	2.2358	2.800	-2.694	31	6	sandy silt to clayey silt
49.213	73.02	2.3172	3.173	-2.315	28	6	sandy silt to clayey silt
49.377	53.48	2.3580	4.409	13.470	34	4	
49.541	38.51	1.8715	4.860	13.718	37	3	
49.705	34.83	1.8475	5.305	21.338	33	3	
49.869	54.70	2.9165	5.332	29.873	52	3	clay
50.033	88.24	4.7669	5.402	17.752	84		very stiff fine grained (*)
50.197	100.94	6.2709	6.213	5.730	97		very stiff fine grained (*)
50.361	117.08	7.0652	6.034	0.035	112	11	very stiff fine grained (*)
50.525	122.79	7.2349	5.892	-3.065	118	11	very stiff fine grained (*)
50.689	115.16	6.7316	5.846	-4.178	110	11	very stiff fine grained (*)
50.853	104.97	4.8461	4.617	-4.694	101	11	very stiff fine grained (*)
51.017	91.76	2.8263	3.080	-4.998	35	6	sandy silt to clayey silt
51.181	87.58	1.8131	2.070	-5.233	28	7	silty sand to sandy silt
51.345	81.42	1.4930	1.834	-5.308	26	7	
51.509	74.61	1.5368	2.060	-5.281	24	7	2227 201101 22 201107 2222
51.673	65.85	1.7021	2.585	-5.182	25	6	sandy silt to clayey silt
51.837	54.67	1.8690	3.419	-4.950	26	5	clayey silt to silty clay
52.001	40.50	1.8401	4.543	-4.598	26	4	silty clay to clay
52.165	22.98	1.5572	6.776	-3.965	22	3	clay
52.329	16.29	1.0097	6.198	-1.020	16	3	
52.493	13.56	0.9446	6.964	2.974	13	3	
52.657	14.95	0.7392	4.943	33.814	14	3	1
52.822	17.58	1.4388	8.184	43.709	17	3	
52.986	40.63	2.6114	6.427	79.846	39	3	clay
53.150	62.72	2.6668	4.252	64.419	30	5	clayey silt to silty clay
53.314	76.74	4.1150	5.362	39.603	73		very stiff fine grained (*)
53.478	77.47	5.5122	7.115	38.236	74		<pre>very stiff fine grained (*)</pre>
53.642	107.60	4.9542	4.604	12.735	103	11	<pre>very stiff fine grained (*)</pre>
53.806	99.08	3.7604	3.795	-3.201	47	5	clayey silt to silty clay
53.970	88.28	2.2589	2.559	-4.779	34	6	sandy silt to clayey silt
54.134	85.07	1.8518	2.177	-5.137	27	7	silty sand to sandy silt
54.298	79.97	1.9471	2.435	-5.204	31	6	sandy silt to clayey silt
54.462	80.76	2.1971	2.720	-5.009	31	6	sandy silt to clayey silt
54.626	81.51	2.3028	2.825	-4.662	31	6	sandy silt to clayey silt
54.790	80.64	2.9695	3.683	-4.173	39	5	clayey silt to silty clay
54.954	77.71	3.4152	4.395	-3.708	37	5	clayey silt to silty clay
55.118	60.40	3.4890	5.777	-3.244	58	11	very stiff fine grained (*)
55.282	53.29	3.7222	6.984	-1.217	51	3	clay
55.446	105.35	4.1069	3.898	6.354	50	5	clayey silt to silty clay

Depth	Tip (Qt) Sleeve Friction (Fs)		F.Ratio	PP (U2)	SPT		Soil Behavior Type
ft	(tsf)	(tsf)	(왕)	(psi)	(blows/ft)	Zone	UBC-1983
55.610	166.95	9.0580	5.426	6.907	160	11 ve	ery stiff fine grained (*)
55.774	178.88	10.3317	5.776	4.250	171	11 ve	ery stiff fine grained (*)
55.938	152.53	10.3127	6.761	-0.478	146	11 ve	ery stiff fine grained (*)
56.102	168.71	10.3227	6.118	-2.075	162	11 ve	ery stiff fine grained (*)

